Background: Subcutaneous tissue is an important target for drug deposition or infusion. A local trauma may induce alterations in local microcirculation and diffusion barriers with consequences for drug bioavailability. We examined the influence of infusion catheters' wear time on local microcirculation and infusion counter pressure.
Methods: One steel catheter and one Teflon (Dupont, Wilmington, DE) catheter were inserted in subcutaneous, abdominal adipose tissue (SCAAT) in 10 healthy, lean men. The catheters were infused with isotonic saline at a rate of 10 microL/h for 48 h. Another steel catheter and a Teflon catheter were inserted contralateral to the previous catheters after 48 h. The infusion counter pressure was measured during a basal infusion rate followed by a bolus infusion. The measurements during a basal rate infusion were repeated after the bolus infusion. Adipose tissue blood flow (ATBF) was measured in SCAAT continuously.
Results: A significant increase in ATBF was observed with wear time for Teflon but not for steel catheters. Mean infusion pressure during the bolus phase increased significantly from 0 to 48 h for Teflon but not for steel catheters. ATBF and infusion counter pressure was similar between Teflon and steel catheters after acute catheter implantation and after wear time of 48 h. The maximum value of pressure during the bolus phase increased with wear time of a catheter.
Conclusions: ATBF and bolus mean infusion pressure increased significantly with a wear time of 48 h in Teflon but not in steel catheters. The maximal pressure required to deliver a bolus infusion increased with wear time of a catheter. A higher maximal pressure was required to deliver a bolus infusion through a Teflon than through a steel catheter. We propose that the difference in infusion counter pressure and ATBF between Teflon and steel catheters with wear time may be explained by better biocompatibility of steel than Teflon.
Download full-text PDF |
Source |
---|---|
http://dx.doi.org/10.1089/dia.2008.0061 | DOI Listing |
JMIR Res Protoc
January 2025
Department of Psychology, The Ohio State University, Columbus, OH, United States.
Background: Personalized approaches to behavior change to improve mental and physical health outcomes are needed. Reducing the intensity, duration, and frequency of stress responses is a mechanism for interventions to improve health behaviors. We developed an ambulatory, dynamic stress measurement approach that can identify personalized stress responses in the moments and contexts in which they occur; we propose that intervening in these stress responses as they arise (ie, just in time; JIT) will result in positive impacts on health behaviors.
View Article and Find Full Text PDFChemosphere
January 2025
TNO Environmental Modelling, Sensing and Analysis, Princetonlaan 6-8, 3584 CB, Utrecht, the Netherlands. Electronic address:
Tyre and road wear particles (TRWPs) are estimated to be the largest source of microplastics in the environment and due to the intrinsic use of tyres in our society this will continue to grow. Understanding their degradation mechanisms and subsequent accumulation over time is important to gain insights into the fate and impact of these particles in the environment. Accelerated UV-ageing was performed on cryomilled tyre tread particles and TRWPs from a road simulator to investigate the abiotic degradation of rubber.
View Article and Find Full Text PDFACS Appl Mater Interfaces
January 2025
Department of Materials Science and Engineering, Delft University of Technology, Mekelweg 2, 2628 CD Delft, The Netherlands.
Chromium-based functional coatings (CFCs) are widely recognized for their outstanding wear and corrosion resistance across diverse industrial sectors. However, despite advancements in deposition techniques and microstructural enhancements, many contemporary CFCs remain vulnerable to degradation in highly corrosive environments. For the first time, this research delivers a thorough characterization of the corrosion resistance of advanced CFCs, focusing on the performance of a 5 μm thin dense chromium (TDC) coating.
View Article and Find Full Text PDFJ Orthop Surg Res
January 2025
Department of Orthopaedics, Liaocheng People's Hospital, Liaocheng, Shandong, P.R. China.
Background: Vitamin E-diffused highly cross-linked polyethylene (HXLPE/Vit E) is a relatively advanced material used in total hip arthroplasty (THA) but whether it shows superiority is unclear.
Objective: This meta-analysis was performed to investigate the effect of HXLPE/Vit E liners in THA.
Methods: Medline/PubMed, Embase and Cochrane Library databases were searched to retrieve studies assessing the efficacy of HXLPE/Vit E liners in THA with the design of a randomized, controlled trial.
Nanoscale
January 2025
Pro2TecS - Chemical Product and Process Technology Research Center. Department of Chemical Engineering and Materials Science. Universidad de Huelva. ETSI, Campus de "El Carmen", 21071 Huelva, Spain.
This study explores the preparation of lubricating oleo-dispersions using electrospun nanofibrous mats made from low-sulfonate lignin (LSL) and polycaprolactone (PCL). The rheological and tribological properties of the oleo-dispersions were significantly modulated for the first time through the exploration of LSL/PCL ratio and electrospinning conditions such as applied voltage, distance between the tip and collector, flow rate, ambient humidity, and collector configuration. Adequate uniform ultrathin fibers and Small-amplitude oscillatory shear (SAOS) functions of the oleo-dispersions, with storage modulus values ranging from 10 to 10 Pa at 25 °C, were obtained with a flow rate of 0.
View Article and Find Full Text PDFEnter search terms and have AI summaries delivered each week - change queries or unsubscribe any time!