Effects of electron-deficient beta-diketiminate and formazan supporting ligands on copper(I)-mediated dioxygen activation.

Inorg Chem

Department of Chemistry, Center for Metals in Biocatalysis, and Supercomputing Institute, University of Minnesota, 207 Pleasant St. SE, Minneapolis, Minnesota 55455, USA.

Published: May 2009

Copper(I) complexes of a diketiminate featuring CF(3) groups on the backbone and dimethylphenyl substituents (4) and a nitroformazan (5) were synthesized and shown by spectroscopy, X-ray crystallography, cyclic voltammetry, and theory to contain copper(I) sites electron-deficient relative to those supported by previously studied diketiminate complexes comprising alkyl or aryl backbone substituents. Despite their electron-poor nature, oxygenation of LCu(CH(3)CN) (L = 4 or 5) at room temperature yielded bis(hydroxo)dicopper(II) compounds and at -80 degrees C yielded bis(mu-oxo)dicopper complexes that were identified on the basis of UV-vis and resonance Raman spectroscopy, spectrophotometric titration results (2:1 Cu/O(2) ratio), electron paramagnetic resonance spectroscopy (silent), and density functional theory calculations. The bis(mu-oxo)dicopper complex supported by 5 exhibited unusual spectroscopic properties and decayed via a novel intermediate proposed to be a metallaverdazyl radical complex, findings that highlight the potential for the formazan ligand to exhibit "noninnocent" behavior.

Download full-text PDF

Source
http://www.ncbi.nlm.nih.gov/pmc/articles/PMC2894635PMC
http://dx.doi.org/10.1021/ic9002466DOI Listing

Publication Analysis

Top Keywords

effects electron-deficient
4
electron-deficient beta-diketiminate
4
beta-diketiminate formazan
4
formazan supporting
4
supporting ligands
4
ligands copperi-mediated
4
copperi-mediated dioxygen
4
dioxygen activation
4
activation copperi
4
copperi complexes
4

Similar Publications

Non-metallic iodine single-atom catalysts with optimized electronic structures for efficient Fenton-like reactions.

Nat Commun

January 2025

State Environmental Protection Key Laboratory of Environmental Health Impact Assessment of Emerging Contaminants, School of Environmental Science and Engineering, Shanghai Jiao Tong University, Shanghai, P.R. China.

In this study, we introduce a highly effective non-metallic iodine single-atom catalyst (SAC), referred to as I-NC, which is strategically confined within a nitrogen-doped carbon (NC) scaffold. This configuration features a distinctive C-I coordination that optimizes the electronic structure of the nitrogen-adjacent carbon sites. As a result, this arrangement enhances electron transfer from peroxymonosulfate (PMS) to the active sites, particularly the electron-deficient carbon.

View Article and Find Full Text PDF

Iminophosphoranes with the general formula (RP═NR') have great potential in synthetic chemistry as valuable precursors/intermediates in organic synthesis or as building blocks for various organic compounds. However, the synthetic approaches and conditions to prepare iminophosphoranes are still poorly understood, limiting the utility of this chemistry for organic materials. In this article, a simple and efficient synthesis of previously unattainable poly(arylene iminophosphoranes) is reported.

View Article and Find Full Text PDF

Near-infrared (NIR)-triggered type-I photosensitizers are crucial to address the constraints of hypoxic tumor microenvironments in phototherapy; however, significant challenges remain. By selecting an electron-deficient unit, a matched energy gap in the upper-level state is instrumental in boosting the efficiency of intersystem crossing for the type-I electron transfer process. 2-Cyanothiazole, an electron acceptor, is covalently linked with N, N-diphenyl-4-(thiophen-2-yl)aniline to yield a multifunctional photosensitizer (TTNH) that exhibits intrinsic NIR absorbance and compatible T energy levels, facilitating both radiative and nonradiative transitions.

View Article and Find Full Text PDF

Engineering Subnanometric Electronic Interaction between Ru and Mn in Zeolite Boosts Catalytic Oxidation of Dichloromethane.

Environ Sci Technol

January 2025

Tianjin Key Lab of Indoor Air Environmental Quality Control, School of Environmental Science and Engineering, Tianjin University, Tianjin 300350, P. R. China.

Designing catalysts with both activity and stability remains a grand challenge for the removal of chlorinated volatile organic compounds (CVOCs) by catalytic oxidation. Herein, the Ru-Mn subnanometric species encapsulated in ZSM-5 zeolite (RuMn@Z) was synthesized. It shows that the 90% conversion of dichloromethane is as low as 320 °C, which is significantly lower than that of Ru@Z (350 °C) and the impregnation catalyst (RuMn/Z, 355 °C).

View Article and Find Full Text PDF

Urea Chelation of I for High-Voltage Aqueous Zinc-Iodine Batteries.

ACS Nano

January 2025

Department of Mechanical Engineering, Research Institute for Smart Energy, The Hong Kong Polytechnic University, Hong Kong, China.

The multielectron conversion electrochemistry of I/I/I enables high specific capacity and voltage in zinc-iodine batteries. Unfortunately, the I ions are thermodynamically unstable and are highly susceptible to hydrolysis. Current endeavors primarily focus on exploring interhalogen chemistry to activate the I/I couple.

View Article and Find Full Text PDF

Want AI Summaries of new PubMed Abstracts delivered to your In-box?

Enter search terms and have AI summaries delivered each week - change queries or unsubscribe any time!