New comparative genome hybridization technology on NotI-microarrays is presented (Karolinska Institute International Patent WO02/086163). The method is based on comparative genome hybridization of NotI-probes from tumor and normal genomic DNA with the principle of new DNA NotI-microarrays. Using this method 181 NotI linking loci from human chromosome 3 were analyzed in 200 malignant tumor samples from different organs: kidney, lung, breast, ovary, cervical, prostate. Most frequently (more than in 30%) aberrations--deletions, methylation,--were identified in NotI-sites located in MINT24, BHLHB2, RPL15, RARbeta1, ITGA9, RBSP3, VHL, ZIC4 genes, that suggests they probably are involved in cancer development. Methylation of these genomic loci was confirmed by methylation-specific PCR and bisulfite sequencing. The results demonstrate perspective of using this method to solve some oncogenomic problems.
Download full-text PDF |
Source |
---|
Purpose: Datopotamab deruxtecan (Dato-DXd) is a trophoblast cell-surface antigen-2-directed antibody-drug conjugate with a highly potent topoisomerase I inhibitor payload. The TROPION-Lung05 phase II trial (ClinicalTrials.gov identifier: NCT04484142) evaluated the safety and clinical activity of Dato-DXd in patients with advanced/metastatic non-small cell lung cancer (NSCLC) with actionable genomic alterations progressing on or after targeted therapy and platinum-based chemotherapy.
View Article and Find Full Text PDFInflamm Bowel Dis
January 2025
Department of Genetics and Genomics, Icahn School of Medicine at Mount Sinai, 1 Gustave L. Levy Pl, Box 1498, New York, NY 10029, USA.
Background: Clonal hematopoiesis of indeterminate potential (CHIP) is the presence of somatic mutations in myeloid and lymphoid malignancy genes in the blood cells of individuals without a hematologic malignancy. Inflammation is hypothesized to be a key mediator in the progression of CHIP to hematologic malignancy and patients with CHIP have a high prevalence of inflammatory diseases. This study aimed to identify the prevalence and characteristics of CHIP in patients with inflammatory bowel disease (IBD).
View Article and Find Full Text PDFJ Hered
January 2025
Victory Genomics, Inc, Guilford, CT 06437, USA.
The Dromedary camel has a remarkable history amongst cultures across Asia and northern Africa, serving multiple purposes ranging from providing milk, textiles, racing, and acting as pack animals. Recent genetic studies have revealed that many dromedaries are genetically homogenous, indicating that they do not represent different breeds, advocating for camel 'type' over camel 'breed'. In this study, we leveraged whole genome sequencing (WGS) to sequence 15 Jordanian Alia camels for the first time, alongside 9 Jordanian mixed camels from diverse locations within the country.
View Article and Find Full Text PDFPLoS One
January 2025
Department of Biosciences and Bioengineering, Indian Institute of Technology Bombay, Mumbai, India.
Nucleocytoplasmic large DNA viruses (NCLDVs) have massive genome and particle sizes compared to other known viruses. NCLDVs, including poxviruses, encode ATPases of the FtsK/HerA superfamily to facilitate genome encapsidation. However, their biochemical and structural characteristics are yet to be discerned.
View Article and Find Full Text PDFPLoS Genet
January 2025
Program in Genetics and Genome Biology, SickKids Research Institute, Toronto, Ontario, Canada.
Innovative and easy-to-implement strategies are needed to improve the pathogenicity assessment of rare germline missense variants. Somatic cancer driver mutations identified through large-scale tumor sequencing studies often impact genes that are also associated with rare Mendelian disorders. The use of cancer mutation data to aid in the interpretation of germline missense variants, regardless of whether the gene is associated with a hereditary cancer predisposition syndrome or a non-cancer-related developmental disorder, has not been systematically assessed.
View Article and Find Full Text PDFEnter search terms and have AI summaries delivered each week - change queries or unsubscribe any time!