Introduction: Strawberry (Fragaria x ananassa) is rich in polyphenols, particularly anthocyanins, flavonols, condensed tannins and ellagic tannins. In addition to the fruits, the leaves of strawberry also contain a wide range of phenolic compound classes, but have not been investigated to the same extent as the fruit.

Objective: To characterise a metabolite group present in the leaves of strawberry, that was not amenable for identification based on earlier information available in the literature.

Methodology: Methanolic extracts of strawberry leaves were analysed by UPLC-qTOF-MS/MS and iterative quantum mechanical NMR spectral analysis.

Results: The structures of phenylethanol derivatives of phenylpropanoid glucosides Eutigoside A ( F4) and its two isomeric forms 2-(4-hydroxyphenyl)ethyl-[6-O-(Z)-coumaroyl]-beta-D-glucopyranoside (F6) and 4-(2-hydroxyethyl)phenyl-[6-O-(E)-coumaroyl]-beta-D-glucopyranoside (F1) were resolved by NMR and UPLC-qTOF-MS/MS. In addition, two other derivatives of phenylpropanoid glucosides similar to Eutigoside A but possessing different phenolic acid moieties, namely Grayanoside A ( F5) and 2-(4-hydroxyphenyl)ethyl-[6-O-(E)-caffeoyl]-beta-D-glucopyranoside (F14), were similarly identified. Also, accurate characteristic coupling constants for the subunits are reported and their usefulness in structural analysis is highlighted.

Conclusion: Chemical analysis of the leaves of strawberry (Fragaria x ananassa cv. Jonsok) resulted in the identification of a compound class, phenylethanol derivatives of phenylpropanoid glycosides, not previously found in strawberry.

Download full-text PDF

Source
http://dx.doi.org/10.1002/pca.1133DOI Listing

Publication Analysis

Top Keywords

derivatives phenylpropanoid
16
leaves strawberry
16
phenylethanol derivatives
12
phenylpropanoid glucosides
12
strawberry fragaria
12
fragaria ananassa
12
nmr uplc-qtof-ms/ms
8
ananassa jonsok
8
glucosides eutigoside
8
strawberry
7

Similar Publications

Integrated Transcriptome and Metabolome Analysis Reveals the Resistance Mechanisms of Against .

Int J Mol Sci

January 2025

Key Laboratory of Biology and Genetics Improvement of Oil Crops, Oil Crops Research Institute of Chinese Academy of Agricultural Sciences, Ministry of Agriculture and Rural Affairs, Wuhan 430062, China.

Rapeseed ( L.) is an important crop for healthy edible oil and stockfeed worldwide. However, its growth and yield are severely hampered by black rot, a destructive disease caused by pv.

View Article and Find Full Text PDF

Monoamine oxidase B (MAO-B) is a key enzyme in the mitochondrial outer membrane, pivotal for the oxidative deamination of biogenic amines. Its overexpression has been implicated in the pathogenesis of several cancers, including glioblastoma and colorectal, lung, renal, and bladder cancers, primarily through the increased production of reactive oxygen species (ROS). Inhibition of MAO-B impedes cell proliferation, making it a potential therapeutic target.

View Article and Find Full Text PDF

Background: Perilla frutescens (L.) Britt. (Lamiaceae) leaves are essential culinary and medicinal herbs, native to East Asian countries.

View Article and Find Full Text PDF

Furanocoumarins (FCs) are plant defence compounds derived from the phenylpropanoid pathway via the coumarin umbelliferone that harbour some therapeutic benefits yet are the underlying cause of 'grapefruit-drug interactions' in humans. Most of the pathway genes have not been identified in citrus. We employed a genetic/Omics approach on citrus ancestral species and F1 populations of mandarin × grapefruit and mandarin × pummelo.

View Article and Find Full Text PDF

Rice sheath blight (RSB), caused by the pathogenic fungus , poses a significant threat to global food security. The defense mechanisms employed by rice against RSB are not well understood. In our study, we analyzed the interactions between rice and by comparing the phenotypic changes, ROS content, and metabolite variations in both tolerant and susceptible rice varieties during the early stages of fungal infection.

View Article and Find Full Text PDF

Want AI Summaries of new PubMed Abstracts delivered to your In-box?

Enter search terms and have AI summaries delivered each week - change queries or unsubscribe any time!