A PHP Error was encountered

Severity: Warning

Message: file_get_contents(https://...@pubfacts.com&api_key=b8daa3ad693db53b1410957c26c9a51b4908&a=1): Failed to open stream: HTTP request failed! HTTP/1.1 429 Too Many Requests

Filename: helpers/my_audit_helper.php

Line Number: 176

Backtrace:

File: /var/www/html/application/helpers/my_audit_helper.php
Line: 176
Function: file_get_contents

File: /var/www/html/application/helpers/my_audit_helper.php
Line: 250
Function: simplexml_load_file_from_url

File: /var/www/html/application/helpers/my_audit_helper.php
Line: 3122
Function: getPubMedXML

File: /var/www/html/application/controllers/Detail.php
Line: 575
Function: pubMedSearch_Global

File: /var/www/html/application/controllers/Detail.php
Line: 489
Function: pubMedGetRelatedKeyword

File: /var/www/html/index.php
Line: 316
Function: require_once

EXAFS study of dopant ions with different charges in nanocrystalline anatase: evidence for space-charge segregation of acceptor ions. | LitMetric

EXAFS study of dopant ions with different charges in nanocrystalline anatase: evidence for space-charge segregation of acceptor ions.

Chemphyschem

Université de Provence-CNRS, UMR 6264: Laboratoire Chimie Provence, Centre St Jérôme, 13397 Marseille Cedex 20, France.

Published: June 2009

Nanocrystalline TiO(2) (anatase) is an essential oxide for environment and energy applications. A combination of EXAFS spectroscopy and DFT calculations on a series of dopants with quite similar ion radius, but increasing ion charge, show boundary space charge segregation of acceptor cations. The picture illustrates the Fourier-transformed EXAFS spectrum for Sn(4+)-doped TiO(2).A series of dopants, including acceptor ions (Zn(2+), Y(3+)), isovalent ions (Zr(4+), Sn(4+)) as well as a donor ion (Nb(5+)), were studied by EXAFS spectroscopy in nanocrystalline TiO(2) anatase powders and nanoceramics. Similar results were found for nanocrystalline powders and nanocrystalline ceramics, made by hot-pressing the powders. Boundary segregation was observed for the acceptor ions yttrium and zinc, whereas tin, zirconium and niobium ions were placed on substitutional bulk sites and did not segregate, whatever their concentration. These results can be interpreted based on defect thermodynamics, in the framework of a space charge segregation model with positive boundary core, due to excess oxide ion vacancies, and negative space charge regions, where ionized acceptors are segregated.

Download full-text PDF

Source
http://dx.doi.org/10.1002/cphc.200800806DOI Listing

Publication Analysis

Top Keywords

acceptor ions
12
space charge
12
segregation acceptor
8
nanocrystalline tio2
8
tio2 anatase
8
exafs spectroscopy
8
series dopants
8
charge segregation
8
ions
6
nanocrystalline
5

Similar Publications

Want AI Summaries of new PubMed Abstracts delivered to your In-box?

Enter search terms and have AI summaries delivered each week - change queries or unsubscribe any time!