Formulation of the Fourier modal method for multilevel structures with spatially adaptive resolution is presented, using a slightly reformulated representation for the spatial coordinates. Projections to Fourier base in boundary value problem are used allowing extensions to multilayer profiles with differently placed transitions. We evade the eigenvalue problem in homogeneous regions demanded in the original formulation of the Fourier modal method with adaptive spatial resolution.
Download full-text PDF |
Source |
---|---|
http://dx.doi.org/10.1364/oe.10.000024 | DOI Listing |
Materials (Basel)
December 2024
Division of Structural Mechanics and Material Mechanics, Faculty of Civil Engineering, Cracow University of Technology, 31-155 Kraków, Poland.
In this study, we investigated the vibration of adhesively bonded composite cantilevers consisting of two beech wood lamella and a bondline of flexible polyurethane. The beams had a constant total height, while the thickness of the adhesive layer varied. We analyzed both the driven and free vibration of a single cantilever beam and a cantilever with an additional mass attached to its end.
View Article and Find Full Text PDFSensors (Basel)
December 2024
CeMOS Research and Transfer Center, Mannheim University of Applied Sciences, 68163 Mannheim, Germany.
Advancements in Raman light sheet microscopy have provided a powerful, non-invasive, marker-free method for imaging complex 3D biological structures, such as cell cultures and spheroids. By combining 3D tomograms made by Rayleigh scattering, Raman scattering, and fluorescence detection, this modality captures complementary spatial and molecular data, critical for biomedical research, histology, and drug discovery. Despite its capabilities, Raman light sheet microscopy faces inherent limitations, including low signal intensity, high noise levels, and restricted spatial resolution, which impede the visualization of fine subcellular structures.
View Article and Find Full Text PDFFourier Ptychographic Microscopy (FPM) provides high-resolution imaging and morphological information over large fields of view, while Computational Scattered Light Imaging (ComSLI) excels at mapping interwoven fiber organization in unstained tissue sections. This study introduces Fourier Ptychographic Scattered Light Microscopy (FP-SLM), a new multi-modal approach that combines FPM and ComSLI analyses to create both high-resolution phase-contrast images and fiber orientation maps from a single measurement. The method is demonstrated on brain sections (frog, monkey) and sections from thigh muscle and knee (mouse).
View Article and Find Full Text PDFSci Rep
November 2024
Department of Breast and Thyroid Surgery, Affiliated Tumor Hospital of Xinjiang Medical University, Urumqi, 830017, Xinjiang, China.
The diagnosis of cervical lymph node metastasis from thyroid cancer is an essential stage in the progression of thyroid cancer. The metastasis of cervical lymph nodes directly affects the prognosis and survival rate of patients. Therefore, timely and early diagnosis is crucial for effective treatment and can significantly improve patients' survival rate and quality of life.
View Article and Find Full Text PDFMath Biosci Eng
August 2024
Department of Nursing, The Third Affiliated Hospital with Nanjing Medical University, Changzhou 213003, China.
It is important to classify electroencephalography (EEG) signals automatically for the diagnosis and treatment of epilepsy. Currently, the dominant single-modal feature extraction methods cannot cover the information of different modalities, resulting in poor classification performance of existing methods, especially the multi-classification problem. We proposed a multi-modal feature fusion (MMFF) method for epileptic EEG signals.
View Article and Find Full Text PDFEnter search terms and have AI summaries delivered each week - change queries or unsubscribe any time!