Carbonatite lavas are highly unusual in that they contain almost no SiO(2) and are >50 per cent carbonate minerals. Although carbonatite magmatism has occurred throughout Earth's history, Oldoinyo Lengai, in Tanzania, is the only currently active volcano producing these exotic rocks. Here we show that volcanic gases captured during an eruptive episode at Oldoinyo Lengai are indistinguishable from those emitted along mid-ocean ridges, despite the fact that Oldoinyo Lengai carbonatites occur in a setting far removed from oceanic spreading centres. In contrast to lithophile trace elements, which are highly fractionated by the immiscible phase separation that produces these carbonatites, volatiles (CO(2), He, N(2) and Ar) are little affected by this process. Our results demonstrate that a globally homogenous reservoir exists in the upper mantle and supplies volatiles to both mid-ocean ridges and continental rifts. This argues against an unusually C-rich mantle being responsible for the genesis of Na-rich carbonatite and its nephelinite source magma at Oldoinyo Lengai. Rather, these carbonatites are formed in the shallow crust by immiscibility from silicate magmas (nephelinite), and are stable under eruption conditions as a result of their high Na contents.

Download full-text PDF

Source
http://dx.doi.org/10.1038/nature07977DOI Listing

Publication Analysis

Top Keywords

oldoinyo lengai
20
mid-ocean ridges
8
lengai carbonatites
8
oldoinyo
5
lengai
5
upper-mantle volatile
4
volatile chemistry
4
chemistry oldoinyo
4
lengai volcano
4
volcano origin
4

Similar Publications

Shifting sand (SS) is a single dune-shaped mass of black ash material moving across western Ngorongoro in northern Tanzania. The moving sand has become an important tourist destination for several decades. Despite being part of the important geosites at the Ngorongoro Conservation Area, the nature, origin, and behaviors demonstrated by SS remain poorly understood.

View Article and Find Full Text PDF

The discrepancy between Na-rich compositions of modern carbonatitic lavas (Oldoinyo Lengai volcano) and alkali-poor ancient carbonatites remains a topical problem in petrology. Although both are supposedly considered to originate via fractional crystallization of a "common parent" alkali-bearing Ca-carbonatitic magma, there is a significant compositional gap between the Oldoinyo Lengai carbonatites and all other natural compositions reported (including melt inclusions in carbonatitic minerals). In an attempt to resolve this, we investigate the petrogenesis of Ca-carbonatites from two occurrences (Guli, Northern Siberia and Tagna, Southern Siberia), focusing on mineral textures and alkali-rich multiphase primary inclusions hosted within apatite and magnetite.

View Article and Find Full Text PDF

Evidence for the alkaline nature of parental carbonatite melts at Oka complex in Canada.

Nat Commun

July 2014

Department of Civil and Environmental Engineering and Earth Sciences, University of Notre Dame, 156 Fitzpatrick Hall, Notre Dame, Indiana 46556, USA.

The Earth's sole active carbonatite volcano, Oldoinyo Lengai (Tanzania), is presently erupting unique natrocarbonatite lavas that are characterized by Na- and K-bearing magmatic carbonates of nyerereite [Na2Ca(CO3)2] and gregoryite [(Na2,K2,Ca)CO3]. Contrarily, the vast majority of older, plutonic carbonatite occurrences worldwide are dominated by Ca-(calcite) or Mg-(dolomite)-rich magmatic carbonates. Consequently, this leads to the conundrum as to the composition of primary, mantle-derived carbonatite liquids.

View Article and Find Full Text PDF

Upper-mantle volatile chemistry at Oldoinyo Lengai volcano and the origin of carbonatites.

Nature

May 2009

Department of Earth and Planetary Sciences, MSC03 2040, 1 University of New Mexico, New Mexico 87131-0001, USA.

Carbonatite lavas are highly unusual in that they contain almost no SiO(2) and are >50 per cent carbonate minerals. Although carbonatite magmatism has occurred throughout Earth's history, Oldoinyo Lengai, in Tanzania, is the only currently active volcano producing these exotic rocks. Here we show that volcanic gases captured during an eruptive episode at Oldoinyo Lengai are indistinguishable from those emitted along mid-ocean ridges, despite the fact that Oldoinyo Lengai carbonatites occur in a setting far removed from oceanic spreading centres.

View Article and Find Full Text PDF

The petrogenesis of carbonatites has important implications for mantle processes and for the magmatic evolution of mantle melts rich in carbon dioxide. Oldoinyo Lengai, Tanzania, is the only active carbonatite volcano on Earth. Its highly alkalic, sodium-rich lava, although different in composition from the more common calcium-rich carbonatites, provides the opportunity for observations of the physical characteristics of carbonatite melts.

View Article and Find Full Text PDF

Want AI Summaries of new PubMed Abstracts delivered to your In-box?

Enter search terms and have AI summaries delivered each week - change queries or unsubscribe any time!