Sweating threshold temperature and sweating sensitivity responses are measured to evaluate thermoregulatory control. However, analytic approaches vary, and no standardized methodology has been validated. This study validated a simple and standardized method, segmented linear regression (SReg), for determination of sweating threshold temperature and sensitivity. Archived data were extracted for analysis from studies in which local arm sweat rate (m(sw); ventilated dew-point temperature sensor) and esophageal temperature (T(es)) were measured under a variety of conditions. The relationship m(sw)/T(es) from 16 experiments was analyzed by seven experienced raters (Rater), using a variety of empirical methods, and compared against SReg for the determination of sweating threshold temperature and sweating sensitivity values. Individual interrater differences (n = 324 comparisons) and differences between Rater and SReg (n = 110 comparisons) were evaluated within the context of biologically important limits of magnitude (LOM) via a modified Bland-Altman approach. The average Rater and SReg outputs for threshold temperature and sensitivity were compared (n = 16) using inferential statistics. Rater employed a very diverse set of criteria to determine the sweating threshold temperature and sweating sensitivity for the 16 data sets, but interrater differences were within the LOM for 95% (threshold) and 73% (sensitivity) of observations, respectively. Differences between mean Rater and SReg were within the LOM 90% (threshold) and 83% (sensitivity) of the time, respectively. Rater and SReg were not different by conventional t-test (P > 0.05). SReg provides a simple, valid, and standardized way to determine sweating threshold temperature and sweating sensitivity values for thermoregulatory studies.

Download full-text PDF

Source
http://dx.doi.org/10.1152/japplphysiol.00250.2009DOI Listing

Publication Analysis

Top Keywords

sweating threshold
24
threshold temperature
24
temperature sweating
16
sweating sensitivity
16
rater sreg
16
sweating
10
threshold
9
sensitivity
9
simple valid
8
temperature
8

Similar Publications

Dogs can discriminate between people infected with SARS-CoV-2 from those uninfected, although their results vary depending on the settings in which they are exposed to infected individuals or samples of urine, sweat or saliva. This variability likely depends on the viral load of infected people, which may be closely associated with physiological changes in infected patients. Determining this viral load is challenging, and a practical approach is to use the cycle threshold (Ct) value of a RT-qPCR test.

View Article and Find Full Text PDF

Introduction: Visceral leishmaniasis (VL) also known as Kala-azar is one of the neglected tropical diseases (NTD) of public health importance. Despite being a disease of a long history, the condition remains poorly studied especially in East Africa. For instance, whereas, the geographical location of the disease is known, there is a stark paucity of data on the burden, risk factors and clinical outcomes of this contribution in Northeastern Uganda.

View Article and Find Full Text PDF

Background: "Active" heat acclimation (exercise-in-the-heat) can improve exercise performance but the efficacy of "passive" heat acclimation using post-exercise heat exposure is unclear. Therefore, we synthesised a systematic review and meta-analysis to answer whether post-exercise heat exposure improves exercise performance.

Methods: Five databases were searched to identify studies including: (i) healthy adults; (ii) an exercise training intervention with post-exercise heat exposure via sauna or hot water immersion (treatment group); (iii) a non-heat exposure control group completing the same training; and (iv) outcomes measuring exercise performance in the heat (primary outcome), or performance in thermoneutral conditions, V̇Omax, lactate threshold, economy, heart rate, RPE, core temperature, sweat rate, and thermal sensations.

View Article and Find Full Text PDF

Vanzacaftor-tezacaftor-deutivacaftor for children aged 6-11 years with cystic fibrosis (RIDGELINE Trial VX21-121-105): an analysis from a single-arm, phase 3 trial.

Lancet Respir Med

December 2024

Population Policy and Practice Department, UCL Great Ormond Street Institute of Child Health, University College London, London, UK; Great Ormond Street Hospital for Children NHS Foundation Trust, London, UK. Electronic address:

Article Synopsis
  • Vanzacaftor-tezacaftor-deutivacaftor is a new CFTR modulator showing safety and effectiveness in phase 2 trials for adults with cystic fibrosis, leading to a study evaluating its use in children aged 6-11.
  • This phase 3 trial, called RIDGELINE, involved participants from 33 clinical sites across eight countries, focusing on children with specific CFTR variants and stable health conditions.
  • The study aimed to assess the drug's safety, tolerability, and efficacy over 24 weeks, with primary outcomes evaluated through various health metrics and participant feedback.
View Article and Find Full Text PDF

Sweat chloride reflects CFTR function and correlates with clinical outcomes following CFTR modulator treatment.

J Cyst Fibros

January 2025

Cystic Fibrosis Therapeutics Development Network Coordinating Center, Seattle Children's Hospital, Seattle, WA, USA; Department of Pediatrics, University of Washington, Seattle, WA, USA; Department of Biostatistics, University of Washington, Seattle, WA, USA.

Background: Highly effective CFTR modulators improve CFTR function and lead to dramatic improvements in health outcomes in many people with cystic fibrosis (pwCF). The relationship between measures of CFTR function, such as sweat chloride concentration, and clinical outcomes in pwCF treated with CFTR modulators is poorly defined. We conducted analyses to better understand the relationships between sweat chloride and CFTR function in vitro, and between sweat chloride and clinical outcomes following CFTR modulator treatment.

View Article and Find Full Text PDF

Want AI Summaries of new PubMed Abstracts delivered to your In-box?

Enter search terms and have AI summaries delivered each week - change queries or unsubscribe any time!