Connective tissue growth factor (CTGF) is an important profibrotic factor in kidney diseases. Blockade of endogenous CTGF ameliorates experimental renal damage and inhibits synthesis of extracellular matrix in cultured renal cells. CTGF regulates several cellular responses, including adhesion, migration, proliferation, and synthesis of proinflammatory factors. Here, we investigated whether CTGF participates in the inflammatory process in the kidney by evaluating the nuclear factor-kappa B (NF-kappaB) pathway, a key signaling system that controls inflammation and immune responses. Systemic administration of CTGF to mice for 24 h induced marked infiltration of inflammatory cells in the renal interstitium (T lymphocytes and monocytes/macrophages) and led to elevated renal NF-kappaB activity. Administration of CTGF increased renal expression of chemokines (MCP-1 and RANTES) and cytokines (INF-gamma, IL-6, and IL-4) that recruit immune cells and promote inflammation. Treatment with a NF-kappaB inhibitor, parthenolide, inhibited CTGF-induced renal inflammatory responses, including the up-regulation of chemokines and cytokines. In cultured murine tubuloepithelial cells, CTGF rapidly activated the NF-kappaB pathway and the cascade of mitogen-activated protein kinases, demonstrating crosstalk between these signaling pathways. CTGF, via mitogen-activated protein kinase and NF-kappaB activation, increased proinflammatory gene expression. These data show that in addition to its profibrotic properties, CTGF contributes to the recruitment of inflammatory cells in the kidney by activating the NF-kappaB pathway.
Download full-text PDF |
Source |
---|---|
http://www.ncbi.nlm.nih.gov/pmc/articles/PMC2709681 | PMC |
http://dx.doi.org/10.1681/ASN.2008090999 | DOI Listing |
Inflamm Res
January 2025
Department of Nephrology, the Third Affiliated Hospital of Chongqing Medical University, Chongqing, China.
Background: The pathogenesis of acute kidney injury (AKI) is not fully understood. Tax1-binding protein 1 (TAX1BP1) modulates inflammation and apoptosis through the NF-kB signaling pathway, however, its specific role in ischemic AKI remains unclear.
Methods: We injected a TAX1BP1 overexpression plasmid into the tail vein of male C57BL/6 mice, followed by clamping the bilateral renal arteries to induce AKI.
Inflamm Res
January 2025
Department of Urology, The First Affiliated Hospital of Guangxi Medical University, Guangxi Zhuang Autonomous Region, Nanning, Guangxi, China.
Background: Mitochondrial dysfunction and damage can result in the release of mitochondrial DNA (mtDNA) into the cytoplasm, which subsequently activates the cGAS-STING pathway, promoting the onset of inflammatory diseases. Various factors, such as oxidative stress, viral infection, and drug toxicity, have been identified as inducers of mitochondrial damage. This study aims to investigate the role of mtDNA as a critical inflammatory mediator in the pathogenesis of ketamine (KET)-induced cystitis (KC) through the cGAS-STING pathway.
View Article and Find Full Text PDFInflamm Res
January 2025
Medical Systems Biology Research Center, School of Medicine, Tsinghua University, Beijing, 100084, China.
Background: Traditional Chinese medicine (TCM) is a valuable resource for drug discovery and has demonstrated excellent efficacy in treating inflammatory diseases. This study aimed to develop a universal gene signature-based strategy for high-throughput discovery of anti-inflammatory drugs, especially Traditional Chinese medicine (TCM).
Methods: The disease gene signature of liposaccharide-stimulated THP-1 cells and drug gene signatures of 655 drug candidates were established via sequencing.
Sci Rep
January 2025
Department of Hepatobiliary Surgery, the First Affiliated Hospital of Chongqing Medical University, No.1 Youyi Road, Yuzhong District, Chongqing, 400016, China.
Acute rejection (AR) is a significant complication in liver transplantation, impacting graft function and patient survival. Kupffer cells (KCs), liver-specific macrophages, can polarize into pro-inflammatory M1 or anti-inflammatory M2 phenotypes, both of which critically influence AR outcomes. Angiopoietin-like 4 (ANGPTL4), a secretory protein, is recognized for its function in regulating inflammation and macrophage polarization.
View Article and Find Full Text PDFJ Ethnopharmacol
January 2025
Key Laboratory of Ethnomedicine of Ministry of Education, Minzu University of China, Beijing, 100081, China; Key Laboratory of Environment Change and Resources Use in Beibu Gulf, Ministry of Education, Nanning Normal University, Nanning, 530001, China. Electronic address:
Ethnopharmacological Relevance: Ardisia is a large genus of Primulaceae, 734 accepted species worldwide, and most species are used as ethnomedicines for the treatment of bruises, rheumatism, tuberculosis, and various inflammatory diseases. According to our previous ethnobotanical survey, Ardisia gigantifolia Stapf, Ardisia hanceana Mez (Da-luo-san), and Ardisia crenata Sims (Xiao-luo-san) are commonly used in folk medicine for the treatment of rheumatism. Among them, A.
View Article and Find Full Text PDFEnter search terms and have AI summaries delivered each week - change queries or unsubscribe any time!