The concepts of permitted and forbidden sets enable a new perspective of the memory in neural networks. Such concepts exhibit interesting dynamics in recurrent neural networks. This paper studies the basic theories of permitted and forbidden sets of the linear threshold discrete-time recurrent neural networks. The linear threshold transfer function has been regarded as an adequate transfer function for recurrent neural networks. Networks with this transfer function form a class of hybrid analog and digital networks which are especially useful for perceptual computations. Networks in discrete time can directly provide algorithms for efficient implementation in digital hardware. The main contribution of this paper is to establish foundations of permitted and forbidden sets. Necessary and sufficient conditions for the linear threshold discrete-time recurrent neural networks are obtained for complete convergence, existence of permitted and forbidden sets, as well as conditionally multiattractivity, respectively. Simulation studies explore some possible interesting practical applications.
Download full-text PDF |
Source |
---|---|
http://dx.doi.org/10.1109/TNN.2009.2014373 | DOI Listing |
Enter search terms and have AI summaries delivered each week - change queries or unsubscribe any time!