A novel surface modification technique was employed to produce a polymer modified positive contrast agent nanoparticle through attachment of well-defined homopolymers synthesized via reversible addition-fragmentation chain transfer (RAFT) polymerization. A range of RAFT homopolymers including poly[N-(2-hydroxypropyl)methacrylamide], poly(N-isopropylacrylamide), polystyrene, poly(2-(dimethylamino)ethyl acrylate), poly(((poly)ethylene glycol) methyl ether acrylate), and poly(acrylic acid) were synthesized and subsequently used to modify the surface of gadolinium (Gd) metal-organic framework (MOF) nanoparticles. Employment of a trithiocarbonate RAFT agent allowed for reduction of the polymer end groups under basic conditions to thiolates, providing a means of homopolymer attachment through vacant orbitals on the Gd3+ ions at the surface of the Gd MOF nanoparticles. Magnetic resonance imaging (MRI) confirmed the relaxivity rates of these novel polymer modified structures were easily tuned by changes in the molecular weight and chemical structures of the polymers. When a hydrophilic polymer was used for modification of the Gd MOF nanoparticles, an increase in molecular weight of the polymer provided a respective increase in the longitudinal relaxivity. These relaxivity values were significantly higher than both the unmodified Gd MOF nanoparticles and the clinically employed contrast agents, Magnevist and Multihance, which confirmed the construct's ability to be utilized as a positive contrast nanoparticle agent in MRI. Further characterization confirmed that increased hydrophobicity of the polymer coating on the Gd MOF nanoparticles yielded minimal changes in the longitudinal relaxivity properties but large increases in the transverse relaxivity properties in the MRI.
Download full-text PDF |
Source |
---|---|
http://dx.doi.org/10.1021/la900730b | DOI Listing |
Adv Sci (Weinh)
January 2025
Institute for Engineering Design and Product Development, Research Unit Tribology E307-05, TU Wien, Vienna, 1060, Austria.
Metal-organic framework (MOF) nanoparticles have attracted widespread attention as lubrication additives due to their tunable structures and surface effects. However, their solid lubrication properties have been rarely explored. This work introduces the positive role of moisture in solid lubrication in the case of a newly described Ti-based MOF (COK-47) powder.
View Article and Find Full Text PDFInt J Biol Macromol
January 2025
Department of Mechanical Engineering, Faculty of Engineering, Xi'an Technological University, Shaanxi, China. Electronic address:
This study explored the use of mango lignocellulosic kernel biochar (MKB) modified with MnFeO magnetic nanoparticles and a Cu@Zn-BDC metal-organic framework (MOF) (MKB/MnFeO/Cu@Zn-BDC MOF) for tetracycline (TC) removal from aqueous solutions and hospital wastewater. The modified biochar exhibited strong magnetic properties (19.803 emu/g) and a specific surface area of 30.
View Article and Find Full Text PDFSmall
January 2025
School of Materials Science and Engineering, Tianjin Key Laboratory of Composite and Functional Materials Key Laboratory of Advanced Ceramics and Machining Technology (Ministry of Education), Tianjin University, Tianjin, 300072, China.
Enhancing the catalytic performance and durability of M-N─C catalyst is crucial for the efficient operation of proton exchange membrane fuel cells (PEMFCs) and Zn-Air batteries (ZABs). Herein, an approach is developed for the in situ fabrication of a MOFs-derived porous carbon material, co-loaded with Co nanoparticles (NPs) and Co-N sites and integrated onto Fe-doped carbon nanotubes (CNTs), named Co-NC/Fe-NCNTs. Incorporating polymer-wrapped CNTs improves MOFs dispersion annealing at high temperature, which amplifies the three-phase boundary (TPB) by generating much more mesopores and exposing additional active sites within the catalysts layer.
View Article and Find Full Text PDFAnal Chim Acta
February 2025
School of Physics and Electronic Information Engineering, Henan Polytechnic University, Jiaozuo, 454003, China. Electronic address:
Background: Trimethylamine (TMA) is a colorless, volatile gas with a strong irritating odor. Prolonged exposure to a certain amount of TMA can cause symptoms such as dizziness, nausea and difficulty breathing, and may even be life-threatening. Therefore, effective detection of TMA is crucial.
View Article and Find Full Text PDFPolymers (Basel)
December 2024
Hainan Engineering Research Center of Tropical Ocean Advanced Opto-Electrical Functional Materials, College of Chemistry and Chemical Engineering, Hainan Normal University, Haikou 571158, China.
Chrysoidin (CG) can be ingested into the human body through the skin and cause chronic toxicity, so the detection of CG levels in the environment is crucial. In this study, we synthesize F-Ag@ZIF-8/PVC molecular-imprinted membranes (FZAP-MIM) by an innovative combination of SERS detection, membrane separation, and a molecular-imprinted technique in order to perform the analysis of CG in water. The plasmonic MOF material as a SERS substrate helps to enrich the target and realize the spatial overlap of the target with the nanoparticle tip "hotspot".
View Article and Find Full Text PDFEnter search terms and have AI summaries delivered each week - change queries or unsubscribe any time!