Carbon dioxide and methane transport in DDR zeolite: insights from molecular simulations into carbon dioxide separations in small pore zeolites.

J Am Chem Soc

School of Chemical and Biomolecular Engineering, Georgia Institute of Technology, 311 Ferst Drive, Atlanta, Georgia 30332-0100, USA.

Published: June 2009

The silica zeolite DDR is a strong candidate for separations of CO(2)/CH(4) because of the narrow windows that control molecular transport inside the material's pores. We have used molecular simulations to describe diffusion of CO(2) and CH(4) inside DDR pores. Our simulations introduce a new force-field for this system that for the first time gives results that are consistent with experimental measurements of single-component adsorption and diffusion. Diffusivities obtained from previous simulations greatly overestimated the transport rates of CH(4) and, to a lesser extent, CO(2). Because CH(4) diffuses extremely slowly in DDR, we applied a transition state theory-based kinetic Monte Carlo scheme to accurately describe this diffusion. The most important observation from our calculations is that the characteristics of CO(2)/CH(4) diffusion in DDR are very different from the usual situation in nanoporous materials, where the presence of a slowly diffusing species retards transport rates of a more rapidly diffusing species. In DDR, we show that CO(2) diffusion rates are only weakly affected by the presence of CH(4), despite the very slow diffusion of the latter molecules. The physical origins of this unusual behavior are explained by analyzing the adsorption sites and diffusion mechanism for each species. Our finding suggests DDR membranes are favorable for CO(2)/CH(4) separations and that similar properties may exist for other 8MR zeolites.

Download full-text PDF

Source
http://dx.doi.org/10.1021/ja901483eDOI Listing

Publication Analysis

Top Keywords

carbon dioxide
8
molecular simulations
8
describe diffusion
8
co2 ch4
8
transport rates
8
diffusing species
8
ddr
7
diffusion
7
dioxide methane
4
transport
4

Similar Publications

The electrocatalytic carbon dioxide reduction reaction (CORR) at industrial-level current densities provides a sustainable approach to converting CO into value-added fuels and feedstocks using renewable electricity. However, the CORR conducted typically in alkaline and neutral electrolytes encounters some challenges due to the inevitable reaction between CO and OH ions, which undermines CO utilization and leads to poor operational stability. Acidic media present a viable alternative by reducing (bi)carbonate production, thereby enhancing the carbon efficiency and stability in CORR.

View Article and Find Full Text PDF

Wildfire ashes: evaluating threats on the Pantanal wetland reserve (Mato Grosso, Brazil) using ecotoxicological tests.

Environ Sci Pollut Res Int

January 2025

Program in Biodiversity and Nature Conservation (UFJF), Institute of Biological Sciences (ICB), Federal University of Juiz de Fora (UFJF), University Campus, Martelos, Juiz de Fora, Minas Gerais, CEP, 36036-900, Brazil.

In 2020, the largest continuous wetland area on the planet, the Brazilian Pantanal, experienced an unprecedented fire that affected the entire ecosystem. Our goal was to elucidate the effects of ash presence following the fire events. We quantified the impact of ashes, collected in four Conservation Units, on soil, water, and atmosphere.

View Article and Find Full Text PDF

Copper-Catalysed Electrochemical CO2 Methanation via the Alloying of Single Cobalt Atoms.

Angew Chem Int Ed Engl

January 2025

UESTC: University of Electronic Science and Technology of China, School of Materials and Energy, Chengdu, Sichuan, 611731, Chengdu, CHINA.

The electrochemical reduction of carbon dioxide (CO2) to methane (CH4) presents a promising solution for mitigating CO2 emissions while producing valuable chemical feedstocks. Although single-atom catalysts have shown potential in selectively converting CO2 to CH4, their limited active sites often hinder the realization of high current densities, posing a selectivity-activity dilemma. In this study, we developed a single-atom cobalt (Co) doped copper catalyst (Co1Cu) that achieved a CH4 Faradaic efficiency exceeding 60% with a partial current density of -482.

View Article and Find Full Text PDF

The fermentation process in alcoholic beverage production converts sugars into ethanol and CO, releasing significant amounts of greenhouse gases. Here, Cupriavidus necator DSM 545 was grown autotrophically using gas derived from alcoholic fermentation, using a fed-batch bottle system. Nutrient starvation was applied to induce intracellular accumulation of poly(3-hydroxybutyrate) (PHB), a bioplastic polymer, for bioconversion of CO-rich waste gas into PHB.

View Article and Find Full Text PDF

Carbon dioxide-mediated catalytic pyrolysis of lignin in syngas production.

Int J Biol Macromol

January 2025

Department of Earth Resources and Environmental Engineering, Hanyang University, Seoul 04763, Republic of Korea. Electronic address:

Kraft lignin (KL), a byproduct of the pulp and paper industry, is commonly combusted as a low-grade fuel. However, its high sulphur content results in the emission of sulphur oxides, which pose environmental hazards. This study explores a sustainable approach for the valorisation of waste KL into syngas via CO-mediated pyrolysis.

View Article and Find Full Text PDF

Want AI Summaries of new PubMed Abstracts delivered to your In-box?

Enter search terms and have AI summaries delivered each week - change queries or unsubscribe any time!