The Sine Oculis Homeobox (SIX) proteins play critical roles in organogenesis and are defined by the presence of two evolutionarily conserved functional motifs: a homeobox DNA binding domain and the SIX protein-protein interaction domain. Members of this transcription factor family can be divided into three subgroups: Six1/2, Six4/5, and Six3/6. This partitioning is based mainly on protein sequence similarity and genomic architecture, and not on specificities of DNA binding or binding partners. In fact, it is well demonstrated that members of the different subgroups can bind to and activate common transcriptional targets as well as form biochemical complexes with communal binding partners. Here we report that the C-terminal segment, which is not conserved across different SIX subfamilies, may serve to functionally distinguish individual SIX proteins. In particular, we have dissected the C-terminal region of Optix, the Drosophila ortholog of mammalian Six3/6, and identified three regions that distinguish Optix from Sine Oculis, the fly homolog of Six1/2. Two of these regions have been preserved in all Six3/6 family members while the third section is present only within Optix proteins in the Drosophilids. The activities of these regions are required, in unison, for Optix function. We suggest that biochemical/functional differences between members of large protein families as well as proteins encoded by duplicate genes can, in part, be attributed to the activities of nonconserved segments. Finally, we demonstrate that a subset of vertebrate SIX proteins has retained the ability to function during normal fly eye development but have lost the ability to induce the formation of ectopic eyes.
Download full-text PDF |
Source |
---|---|
http://www.ncbi.nlm.nih.gov/pmc/articles/PMC2738589 | PMC |
http://dx.doi.org/10.1002/dvg.20517 | DOI Listing |
World J Clin Oncol
January 2025
Department of The Breast Center, Cancer Hospital of Shantou University Medical College, Shantou 515041, Guangdong Province, China.
The sine oculis homeobox homolog (SIX) family, a group of transcription factors characterized by a conserved DNA-binding homology domain, plays a critical role in orchestrating embryonic development and organogenesis across various organisms, including humans. Comprising six distinct members, from to , each member contributes uniquely to the development and differentiation of diverse tissues and organs, underscoring the versatility of the SIX family. Dysregulation or mutations in genes have been implicated in a spectrum of developmental disorders, as well as in tumor initiation and progression, highlighting their pivotal role in maintaining normal developmental trajectories and cellular functions.
View Article and Find Full Text PDFSci Rep
January 2025
Department of Spinal Surgery, The Third Affiliated Hospital of Soochow University, Changzhou, China.
Inflammation aggravates secondary damage following spinal cord injury (SCI). M1 microglia induce inflammation and exert neurotoxic effects, whereas M2 microglia exert anti-inflammatory and neuroprotective effects. The sine oculis homeobox (SIX) gene family consists of six members, including sine oculis homeobox homolog 1 (SIX1)-SIX6.
View Article and Find Full Text PDFSignal Transduct Target Ther
December 2024
School of Basic Medical Sciences, Shanxi Medical University, Taiyuan, Shanxi, 030000, China.
Aerobic glycolysis is a hallmark of cancer and is regulated by growth factors, protein kinases and transcription factors. However, it remains poorly understood how these components interact to regulate aerobic glycolysis coordinately. Here, we show that sine oculis homeobox 1 (SIX1) phosphorylation integrates growth factors (e.
View Article and Find Full Text PDFOncogene
January 2025
Guangzhou Institute of Cancer Research, the Affiliated Cancer Hospital, Guangzhou Medical University, Guangzhou, 510095, China.
Sine oculis homeobox homolog 1 (SIX1) is a new identified cancer driver in the development of prostate cancer (PC). However, the upstream regulatory mechanisms for SIX1 reactivation in cancer remains elusive. Here, we found that Ku70 robustly interacts with SIX1 in the nucleus of PC cells.
View Article and Find Full Text PDFSci Rep
October 2024
Department of Otolaryngology, Head and Neck Surgery, Zhongnan Hospital of Wuhan University, Wuhan, 430071, Hubei, China.
Enter search terms and have AI summaries delivered each week - change queries or unsubscribe any time!