The coordinated formation and release of focal adhesions is necessary for cell attachment and migration. According to current models, these processes are caused by temporal variations in protein composition. Protein incorporation into focal adhesions is believed to be controlled by phosphorylation. Here, we tested the exchange dynamics of GFP-vinculin as marker protein of focal adhesions using the method of Fluorescence Recovery After Photobleaching. The relevance of the phosphorylation state of the protein, the age of focal adhesions and the acting force were investigated. For stable focal adhesions of stationary keratinocytes, we determined an exchangeable vinculin fraction of 52% and a recovery halftime of 57 s. Nascent focal adhesions of moving cells contained a fraction of exchanging vinculin of 70% with a recovery halftime of 36 s. Upon maturation, mean saturation values and recovery halftimes decreased to levels of 49% and 42 s, respectively. Additionally, the fraction of stably incorporated vinculin increased with cell forces and decreased with vinculin phosphorylation within these sites. Experiments on a nonphosphorylatable vinculin mutant construct at phosphorylation site tyr1065 confirmed the direct interplay between phosphorylation and exchange dynamics of adhesion proteins during adhesion site maturation.
Download full-text PDF |
Source |
---|---|
http://dx.doi.org/10.1002/cm.20375 | DOI Listing |
J Cell Physiol
January 2025
Department of Biosciences & Bioengineering, IIT Bombay, Mumbai, India.
In addition to proteins such as collagen (Col) and fibronectin, the extracellular matrix (ECM) is enriched with bulky proteoglycan molecules such as hyaluronic acid (HA). However, how ECM proteins and proteoglycans collectively regulate cellular processes has not been adequately explored. Here, we address this question by studying cytoskeletal and focal adhesion organization and dynamics on cells cultured on polyacrylamide hydrogels functionalized with Col, HA and a combination of Col and HA (Col/HA).
View Article and Find Full Text PDFFront Cell Dev Biol
January 2025
Mathematical Institute, Faculty of Science, Leiden University, Leiden, Netherlands.
Many mammalian cells, including endothelial cells and fibroblasts, align and elongate along the orientation of extracellular matrix (ECM) fibers in a gel when cultured . During cell elongation, clusters of focal adhesions (FAs) form near the poles of the elongating cells. FAs are mechanosensitive clusters of adhesions that grow under mechanical tension exerted by the cells' pulling on the ECM and shrink when the tension is released.
View Article and Find Full Text PDFACS Chem Biol
January 2025
Department of Pediatric Dentistry, School and Hospital of Stomatology, Cheeloo College of Medicine, Shandong University, and Shandong Key Laboratory of Oral Tissue Regeneration, Shandong Engineering Research Center of Dental Materials and Oral Tissue Regeneration, Shandong Provincial Clinical Research Center for Oral Diseases, Jinan 250012, China.
Chronic kidney fibrosis poses a significant global health challenge with effective therapeutic strategies remaining elusive. While cell-extracellular matrix (ECM) interactions are known to drive fibrosis progression, the specific role of focal adhesions (FAs) in kidney fibrosis is not fully understood. In this study, we investigated the role of FAs in kidney tubular epithelial cell fibrosis by employing precise nanogold patterning to modulate integrin distribution.
View Article and Find Full Text PDFAngew Chem Int Ed Engl
January 2025
Emory University, Chemistry, 1515 Dickey Dr., 30322, Atlanta, UNITED STATES OF AMERICA.
Genetically encoded tension sensors (GETSs) allow for quantifying forces experienced by intracellular proteins involved in mechanotransduction. The vast majority of GETSs are comprised of a FRET pair flanking an elastic "spring-like" domain that gradually extends in response to force. Because of ensemble averaging, the FRET signal generated by such analog sensors conceals forces that deviate from the average, and hence it is unknown if a subset of proteins experience greater magnitudes of force.
View Article and Find Full Text PDFPaxillin (PXN) and focal adhesion kinase (FAK) are two major components of the focal adhesion complex, a multiprotein structure linking the intracellular cytoskeleton to the cell exterior. PXN interacts directly with the C-terminal targeting domain of FAK (FAT) via its intrinsically disordered N-terminal domain. This interaction is necessary and sufficient for localizing FAK to focal adhesions.
View Article and Find Full Text PDFEnter search terms and have AI summaries delivered each week - change queries or unsubscribe any time!