Ligand dynamics on the surface of zirconium oxo clusters.

Phys Chem Chem Phys

Institute of Materials Chemistry, Vienna University of Technology, Getreidemarkt 9, A-1060, Vienna.

Published: May 2009

The dynamics of carboxylate ligands on the surface of zirconium oxo clusters was investigated in two case studies. Zr4O2(methacrylate)12 was investigated by one- and two dimensional NMR spectra both in the solid state and in solution. In solution, the cluster is C2h symmetric; stepwise intramolecular exchange of the four non-equivalent ligands was observed when the temperature was raised from -80 degrees C to -50 degrees C. The individual exchange processes were assigned to different ligand positions. Ab initio molecular dynamics simulations were performed for Zr6(OH)4O4(formate)12 to study the trajectory for the rearrangement of three chelating ligands into bridging positions, i.e. the conversion of the C3-symmetric into an Oh-symmetric cluster. The observation of a dip in the energy barrier along the reaction coordinate was related to the intermediate formation of hydrogen bonds between the moving oxygen atom of the rearranging ligand and a micro3-OH group of the cluster. Thus, the motion of the ligand requires a concerted motion in three dimensions.

Download full-text PDF

Source
http://dx.doi.org/10.1039/b820731cDOI Listing

Publication Analysis

Top Keywords

surface zirconium
8
zirconium oxo
8
oxo clusters
8
ligand
4
ligand dynamics
4
dynamics surface
4
clusters dynamics
4
dynamics carboxylate
4
carboxylate ligands
4
ligands surface
4

Similar Publications

Background: Although surface finishing processes are effective against Streptococcus mutans biofilm, the mechanism of action of saliva with different acidity values ​​has not been studied in detail. This study aims to produce four different all-ceramic materials in a single session with CAD/CAM devices and apply two different surface finishing processes, glazing and polishing, and then determine the retention of Streptococcus mutants on the surfaces of the materials in saliva with varying levels of acidity.

Methods: Zirconia-reinforced lithium silicate (Vita Suprinity, Vita Zahnfabrik, Bad Saöckingen, Germany), monochromatic feldspar (Vitablocs Mark 2, Vita Zahnfabrik, Bad Saöckingen, Germany), leucite glass ceramic (IPS Empress CAD, Ivoclar Vivadent, Liechtenstein), and monolithic zirconia (Incoris TZI (Cerec) Sirona, Germany) were used in the study.

View Article and Find Full Text PDF

Study of modified ion exchange resins for phosphorus removal from glyphosate by-product salt.

Environ Technol

December 2024

School of Materials Science and Engineering, Yancheng Institute of Technology, Yancheng, People's Republic of China.

In order to achieve the goal of phosphate removal from glyphosate by-product salts, zirconium and zinc ions were successfully loaded onto D202 resin by co-precipitation modification method in this study, and their effectiveness in phosphate removal was evaluated under various conditions. The results of static adsorption experiments showed that the Zr/Zn@D202 resin effectively reduced the phosphate concentration in the glyphosate by-product salts from 10 mg/L to less than 0.1 mg/L, which met the national level emission standard ( < 0.

View Article and Find Full Text PDF

Removal of liquid scintillator exudates by the metal organic frameworks materials: The role of functional groups.

PLoS One

December 2024

Jiangsu Key Laboratory of Chemical Pollution Control and Resources Reuse, School of Environmental and Biological Engineering, Nanjing University of Science and Technology, Nanjing, China.

The leakage of Liquid scintillator exudates has brought potential harm to the environment. Attributed to the large specific surface area and high modifiability, high-performance adsorbents based on metal-organic frameworks (MOFs) can effectively remove organic pollutants. In this work, we use different functional groups to prepare the material of UIO-66(Zr).

View Article and Find Full Text PDF

In this study, three different materials were investigated for their ability to degrade benzene, toluene, and xylene (BTX) using light energy. The materials studied were activated charcoal (AC), zeolitic imidazolate framework (ZIF-8), and zirconium metal-organic framework (Zr-MOF). Initially, AC, ZIF-8, and Zr-MOF were characterized using X-ray diffraction (XRD), Fourier transform infrared (FTIR) spectroscopy, scanning electron microscopy (SEM), Brunauer-Emmett-Teller (BET) surface area analysis, and spectroscopic analysis techniques.

View Article and Find Full Text PDF

Shear bond strength and ARI scores of metal brackets to glazed glass ceramics and zirconia: an in vitro study investigating surface treatment protocols.

BMC Oral Health

December 2024

Faculty of Dentistry, Innovative Dental Materials and Interfaces Research Unit (URB2i), UR 4462, Paris Cité University, 1 rue Maurice Arnoux, Montrouge, 92120, France.

Objective: To evaluate the shear bond strength (SBS) and adhesive remnant index (ARI) scores of metal brackets to glazed lithium disilicate reinforced glass-ceramics and zirconia according to various surface treatment protocols.

Methods: A total of 240 lithium disilicate ceramic (LD) and 240 zirconia (Zr) blocks were randomly divided according to sandblasting, hydrofluoric acid (HF) etching, universal primer use, and the adhesive system applied. A maxillary canine metal bracket was bonded to each sample with resin cement (Transbond XT, TXT).

View Article and Find Full Text PDF

Want AI Summaries of new PubMed Abstracts delivered to your In-box?

Enter search terms and have AI summaries delivered each week - change queries or unsubscribe any time!