Understanding of molecular mechanisms governing the enucleating phenomena of human erythrocytes is of major importance in both fundamental and applied studies. Total RNA (n=7) from human RBCs (purity of erythrocyte preparation >99,99%) was tested using 2100 Bioanalyzer (Agilent, USA), and transcribed to cDNA. Microarray analysis was performed with the Human Genome Focus GeneChip (Affymetrix, USA), containing 8500 transcripts corresponding to 8400 human genes. Here we report that human RBCs contain typical eukaryotic RNA with 28S- and18S-rRNA standard bands. Microarray studies revealed the presence of transcripts of 1019 different genes in erythrocytic RNA. Gene Ontology analysis recognized 859 genes involved in general biological processes: 529 genes for cellular metabolism, 228 genes for signal transduction, 104 genes for development, 107 genes for immune response, 62 genes for protein localization, 53 genes for programmed cell death, and 5 genes for autophagy. A number of genes responsible for transcription, translation, RNA-stabilisation as well as for apoptosis and anti-apoptosis have been identified for the first time in circulating human RBCs. The presented data shed new light on the genetic determination of erythropoiesis, apoptosis and may have implications on the pathophysiology and diagnosis of various diseases involving red blood cells.
Download full-text PDF |
Source |
---|---|
http://www.ncbi.nlm.nih.gov/pmc/articles/PMC2677714 | PMC |
http://dx.doi.org/10.7150/ijms.6.156 | DOI Listing |
Exp Appl Acarol
January 2025
Laboratorio de Vectores y Enfermedades Transmitidas, Departamento de Ciencias Biológicas, CENUR Litoral Norte, Universidad de la República, Salto, Uruguay.
Babesia species (Piroplasmida) are hemoparasites that infect erythrocytes of mammals and birds and are mainly transmitted by hard ticks (Acari: Ixodidae). These hemoparasites are known to be the second most common parasites infecting mammals, after trypanosomes, and some species may cause malaria-like disease in humans. Diagnosis and understanding of Babesia diversity increasingly rely on genetic data obtained through molecular techniques.
View Article and Find Full Text PDFSci Rep
January 2025
Department of Laboratory Medicine, Shanxi Bethune Hospital, Shanxi Academy of Medical Sciences, Tongji Shanxi Hospital, Third Hospital of Shanxi Medical University, Taiyuan, 030032, China.
Hematological parameters available on automated hematology analyzers have been shown to be useful indicators for hematological disorders. However, extensive studies especially in aplastic anemia for these indices are sparse. Our aim was to investigate the clinical utility of hematological parameters in aplastic anemia.
View Article and Find Full Text PDFSci Rep
January 2025
Sorbonne Université, CNRS, Inserm, Centre d'Immunologie et des Maladies Infectieuses, CIMI, F-75013 Paris, France.
Malaria is caused by protozoan parasites of the genus Plasmodium and remains a global health concern. The parasite has a highly adaptable life cycle comprising successive rounds of asexual replication in a vertebrate host and sexual maturation in the mosquito vector Anopheles. Genetic manipulation of the parasite has been instrumental for deciphering the function of Plasmodium genes.
View Article and Find Full Text PDFSci Rep
January 2025
Aix Marseille Univ, CNRS, EFS, ADES, Marseille, France.
Despite the advances in paleogenomics, red cell blood group systems in ancient human populations remain scarcely known. Pioneer attempts showed that Neandertal and Denisova, two archaic hominid populations inhabiting Eurasia, expressed blood groups currently found in sub-Saharans and a rare "rhesus", part of which is found in Oceanians. Herein we fully pictured the blood group genetic diversity of 22 Homo sapiens and 14 Neandertals from Eurasia living between 120,000 and 20,000 years before present (yBP).
View Article and Find Full Text PDFBull Math Biol
January 2025
Wolfson Centre for Mathematical Biology, Mathematical Institute, University of Oxford, Woodstock Rd, Oxford, Oxfordshire, OX2 6GG, UK.
We analyse mathematical models of blood flow in two simple vascular networks in order to identify structural features that lead to the formation of multiple equilibria. Our models are based on existing rules for blood rheology and haematocrit splitting. By performing bifurcation analysis on these simple network flow models, we identify a link between the changing flow direction in key vessels and the existence of multiple equilibria.
View Article and Find Full Text PDFEnter search terms and have AI summaries delivered each week - change queries or unsubscribe any time!