Performance simulation and analysis of a CMOS/nano hybrid nanoprocessor system.

Nanotechnology

Nanosystems Group, The MITRE Corporation, McLean, VA 22102, USA.

Published: April 2009

This paper provides detailed simulation results and analysis of the prospective performance of hybrid CMOS/nanoelectronic processor systems based upon the field-programmable nanowire interconnect (FPNI) architecture. To evaluate this architecture, a complete design was developed for an FPNI implementation using 90 nm CMOS with 15 nm wide nanowire interconnects. Detailed simulations of this design illustrate that critical design choices and tradeoffs exist beyond those specified by the architecture. This includes the selection of the types of junction nanodevices, as well as the implementation of low-level circuits. In particular, the simulation results presented here show that only nanodevices with an 'on/off' current ratio of 200 or more are suitable to produce correct system-level behaviour. Furthermore, the design of the CMOS logic gates in the FPNI system must be customized to accommodate the resistances of both 'on'-state and 'off'-state nanodevices. Using these customized designs together with models of suitable nanodevices, additional simulations demonstrate that, relative to conventional 90 nm CMOS FPGA systems, performance gains can be obtained of up to 70% greater speed or up to a ninefold reduction in energy consumption.

Download full-text PDF

Source
http://dx.doi.org/10.1088/0957-4484/20/16/165203DOI Listing

Publication Analysis

Top Keywords

simulation analysis
8
performance simulation
4
analysis cmos/nano
4
cmos/nano hybrid
4
hybrid nanoprocessor
4
nanoprocessor system
4
system paper
4
paper detailed
4
detailed simulation
4
analysis prospective
4

Similar Publications

Want AI Summaries of new PubMed Abstracts delivered to your In-box?

Enter search terms and have AI summaries delivered each week - change queries or unsubscribe any time!