The progression of atherosclerosis is associated with leukocyte infiltration within lesions. We describe a technique for the ex vivo imaging of cellular recruitment in atherogenesis which utilizes quantum dots (QD) to color-code different cell types within lesion areas. Spectrally distinct QD were coated with the cell-penetrating peptide maurocalcine to fluorescently-label immunomagnetically isolated monocyte/macrophages and T lymphocytes. QD-maurocalcine bioconjugates labeled both cell types with a high efficiency, preserved cell viability, and did not perturb native leukocyte function in cytokine release and endothelial adhesion assays. QD-labeled monocyte/macrophages and T lymphocytes were reinfused in an ApoE(-/-) mouse model of atherosclerosis and age-matched controls and tracked for up to four weeks to investigate the incorporation of cells within aortic lesion areas, as determined by oil red O (ORO) and immunofluorescence ex vivo staining. QD-labeled cells were visible in atherosclerotic plaques within two days of injection, and the two cell types colocalized within areas of subsequent ORO staining. Our method for tracking leukocytes in lesions enables high signal-to-noise ratio imaging of multiple cell types and biomarkers simultaneously within the same specimen. It also has great utility in studies aimed at investigating the role of distinct circulating leukocyte subsets in plaque development and progression.
Download full-text PDF |
Source |
---|---|
http://www.ncbi.nlm.nih.gov/pmc/articles/PMC2718756 | PMC |
http://dx.doi.org/10.1088/0957-4484/20/16/165102 | DOI Listing |
Langmuir
January 2025
Department of Chemistry, Indian Institute of Technology Bombay, Powai, Mumbai 400076, India.
It is crucial to comprehend protein misfolding and aggregation in the domains of biomedicine, pharmaceuticals, and proteins. Amyloid fibrils are formed when proteins misfold and assemble, resulting in the debilitating illness known as "amyloidosis". This work investigates lysozyme fibrillation with pluronics (F68 and F127).
View Article and Find Full Text PDFJAMA
January 2025
Division of Pediatric Pulmonary Medicine, UPMC Children's Hospital of Pittsburgh, University of Pittsburgh, Pittsburgh, Pennsylvania.
Importance: T helper 2 (T2) cells and T helper 17 (T17) cells are CD4+ T cell subtypes involved in asthma. Characterizing asthma endotypes based on these cell types in diverse groups is important for developing effective therapies for youths with asthma.
Objective: To identify asthma endotypes in school-aged youths aged 6 to 20 years by examining the distribution and characteristics of transcriptomic profiles in nasal epithelium.
JAMA Ophthalmol
January 2025
Department of Ophthalmology, Casey Eye Institute, Oregon Health & Science University, Portland.
J Acquir Immune Defic Syndr
January 2025
Infectious Disease Clinic, IRCCS Policlinico San Martino Hospital, Genoa.
Introduction: Few data are available about the forgiveness of two-drug (2DR) or low-barrier three-drug antiretroviral regimens. The aim of this study is to evaluate the real-life forgiveness of lamivudine/dolutegravir (3TC/DTG) and emtricitabine/tenofovir alafenamide/rilpivirine (FTC/TAF/RPV).
Methods: A two center retrospective observational study enrolled all people with HIV (PWH) treated with 3TC/DTG or FTC/TAF/RPV.
JAMA Dermatol
January 2025
Department of Dermatology, University of Pennsylvania, Philadelphia.
Importance: Cutaneous chronic graft-vs-host disease (GVHD) is independently associated with morbidity and mortality after allogeneic hematopoietic cell transplant. However, the health-related quality-of-life (HRQOL) domains that are most important to patients are poorly understood.
Objective: To perform a concept elicitation study to define HRQOL in cutaneous chronic GVHD from the patient perspective and to compare experiences of patients with epidermal vs sclerotic disease.
Enter search terms and have AI summaries delivered each week - change queries or unsubscribe any time!