Electro-oxidative lithography is used as a tool to create chemical nanostructures on an n-octadecyltrichlorosilane (OTS) monolayer self-assembled on silicon. The use of a bromine precursor molecule, which is exclusively assembled on these chemical templates, can be used to further functionalize the nanostructures by the site-selective generation of azide functions and performing the highly effective 1,3-dipolar cycloaddition reaction with acetylene functionalized molecules. The versatility of this reaction scheme provides the potential to integrate a large variety of functional molecules, to tailor the surface properties of the nanostructures or to anchor molecular building blocks or particles in confined, pre-defined surface areas. The results demonstrated in the present study introduce a conceivable route towards the functionalization of chemically active surface templates with high fidelity and reliability. It is demonstrated that surface features with a lateral resolution of 50 nm functionalized with propargyl alcohol can be fabricated.

Download full-text PDF

Source
http://dx.doi.org/10.1088/0957-4484/20/13/135302DOI Listing

Publication Analysis

Top Keywords

13-dipolar cycloaddition
8
surface templates
8
surface
5
'clicking' nanoscale
4
nanoscale 13-dipolar
4
cycloaddition terminal
4
terminal acetylenes
4
acetylenes azide
4
azide functionalized
4
functionalized nanometric
4

Similar Publications

Reliable methods for rapidly constructing C(sp3)-rich three-dimensional polycycles are in high demand for organic synthesis and medicinal chemistry. Although there are various mature systems for synthesizing five- or six-membered polycycles, a catalytic platform for accessing diverse cycloheptanoid-containing polycyclic scaffolds is lacking. Herein, we describe a method for copper-catalyzed intramolecular 2-aminoallyl cation-diene (4 + 3) cycloaddition reactions.

View Article and Find Full Text PDF

The chemical reactivity between benzene and the "naked" acyclic carbene-like (G13X) species, having two bulky N-heterocyclic boryloxy ligands at the Group 13 center, was theoretically assessed using density functional theory computations. Our theoretical studies show that (BX) preferentially undergoes C-H bond insertion with benzene, both kinetically and thermodynamically, whereas the (AlX) analogue favors a reversible [4 + 1] cycloaddition. Conversely, the heavier carbene analogues ((GaX), (InX), and (TlX)) are not expected to engage in a reaction with benzene.

View Article and Find Full Text PDF

Herein, we report a Cu-DTBP-catalyzed [3 + 2] cycloaddition reaction between 1-(2-oxo-2-phenylethyl)--indole-3-aldehyde and arylalkene, using DMF as the solvent. Under relatively mild reaction conditions, a series of indole compounds were synthesized in moderate yields (up to 73%). This protocol features good functional group tolerance and high atom economy.

View Article and Find Full Text PDF

Planar chirality found tremendous use in many fields, such as chemistry, optics, and materials science. In particular, planar chiral [2.2]paracyclophanes (PCPs) are a type of structurally interesting and practically useful chiral compounds bearing unique electronic and photophysical properties and thus have been widely used in π-stacking polymers, organic luminescent materials, and as a valuable toolbox for developing chiral ligands or organocatalysts.

View Article and Find Full Text PDF

Context: This study meticulously examines the criteria for assigning electron rearrangements along the intrinsic reaction coordinate (IRC) leading to bond formation and breaking processes during the pyrolytic isomerization of cubane (CUB) to 1,3,5,7-cyclooctatetraene (COT) from both thermochemical and bonding perspectives. Notably, no cusp-type function was detected in the initial thermal conversion step of CUB to bicyclo[4.2.

View Article and Find Full Text PDF

Want AI Summaries of new PubMed Abstracts delivered to your In-box?

Enter search terms and have AI summaries delivered each week - change queries or unsubscribe any time!