Anatase and rutile biphasic nanostructured titania (TiO(2)) has been synthesized via hydrolysis of titanium tetraisopropoxide in an aqueous solution of hydrobromic acid (HBr) and N,N-dimethylformamide (DMF) at 80 degrees C for 16 h. The presence of DMF, which was partially hydrolyzed during the process, determined the formation of a biphasic material. Powder x-ray diffraction showed the presence of both anatase and rutile titania phases in a ratio of approx. 1:1. Transmission electron microscope analysis showed that rutile was present as radial flower-like nanorods, which were surrounded by anatase spherical nanoparticles of 5 nm diameter. Low temperature nitrogen adsorption-desorption analysis showed the characteristic hysteresis loop of a mesoporous material. Specific surface area reached a value of 120 m(2) g(-1) and the average pore diameter was 50 A. X-ray photoelectron spectroscopic analysis revealed that interstitial nitrogen was incorporated (0.35 at.%) during the annealing process. According to ultraviolet (UV)-visible diffuse reflectance spectroscope characterization, the N-doping caused a bandgap reduction from 3.0 to 2.9 eV. Photocatalytic activity of the material was tested for the degradation of methylene blue, methyl orange and 4-nitrophenol under near-UV and visible light radiation.

Download full-text PDF

Source
http://dx.doi.org/10.1088/0957-4484/20/12/125604DOI Listing

Publication Analysis

Top Keywords

low temperature
8
biphasic nanostructured
8
nanostructured titania
8
anatase rutile
8
temperature nn-dimethylformamide-assisted
4
nn-dimethylformamide-assisted synthesis
4
synthesis characterization
4
characterization anatase-rutile
4
anatase-rutile biphasic
4
titania anatase
4

Similar Publications

Want AI Summaries of new PubMed Abstracts delivered to your In-box?

Enter search terms and have AI summaries delivered each week - change queries or unsubscribe any time!