We have fabricated Si(1-x)Ge(x) alloy nanowire devices with Ni and Ni/Au electrodes. The electrical transport characteristics of the alloy nanowires depended strongly on the annealing temperature and contact metals. Ni/Au-contacted devices annealed at 400 degrees C showed p-type transistor behavior as well as a resistance switching effect, while no switching was observed from Ni-contacted alloy nanowire devices. To identify the origin of such a hysteretic resistance switching effect, we constructed nanowire devices on a 40 nm Si(3)N(4) membrane. Transmission electron microscopy analysis combined with electrical transport measurements revealed that devices contacted with Ni/Au, and thereby showing resistance switching, have Au atoms right next to the alloy nanowire.

Download full-text PDF

Source
http://dx.doi.org/10.1088/0957-4484/20/11/115708DOI Listing

Publication Analysis

Top Keywords

alloy nanowire
16
nanowire devices
16
resistance switching
12
si1-xgex alloy
8
electrical transport
8
devices
6
alloy
5
nanowire
5
resolving microscopic
4
microscopic interfaces
4

Similar Publications

Self-supported ultrathin PtRuMoCoNi high-entropy alloy nanowires (HEANWs) were synthesized by a one-pot co-reduction method, whose peroxidase (POD)-like activity and catalytic mechanism were elaborated in detail. As expected, the PtRuMoCoNi HEANWs showed excellent POD-like activity. It can quickly catalyze the oxidization of colorless 3,3',5,5'-tetramethylbenzidine (TMB) to blue TMB through decomposition of HO to superoxide radicals.

View Article and Find Full Text PDF

The optimized composition and precisely tailored structure configuration play critical roles in enhancing the catalytic reaction kinetics. Here we report a distinctive core@satellite strategy for designing the advanced platinum-nickel@platinum-nickel-copper-cobalt-indium high-entropy alloy nanowires (PtNi@HEA NWs) as efficient bifunctional catalysts in the proton exchange membrane fuel cell. Impressively, the PtNi@HEA NWs/C shows 19.

View Article and Find Full Text PDF

Thin-film membranes of Pd-Ag and Pd-Cu alloys capable of releasing hydrogen in a wide temperature range have been developed. The surface activation of the membranes with a nanostructured coating made it possible to intensify hydrogen transport through Pd-containing membranes at low temperatures. This effect was achieved by accelerating limiting surface processes by increasing the active area of the membrane.

View Article and Find Full Text PDF

Fe-Ni nanowires (NWs) containing coherent twin boundaries (CTBs) have received widespread attention in recent years owing to their unique chemical properties. It is important to understand the influence of CTBs on the deformation mechanism of Fe-Ni alloy NWs to develop functional materials based on Fe-Ni alloy NWs. The deformation process of BCC Fe-Ni NWs containing several CTBs under uniaxial stretching was simulated using the molecular dynamics method.

View Article and Find Full Text PDF

Manipulation C-C coupling pathway is of great importance for selective CO electroreduction but remain challenging. Herein, two model Cu-based catalysts, by modifying Cu nanowires with Ag nanoparticles (AgCu NW) and Ag single atoms (AgCu NW), respectively, are rationally designed for exploring the C-C coupling mechanisms in electrochemical CO reduction reaction (CORR). Compared to AgCu NW, the AgCu NW exhibits a more than 10-fold increase of C selectivity in CO reduction to ethanol, with ethanol-to-ethylene ratio increased from 0.

View Article and Find Full Text PDF

Want AI Summaries of new PubMed Abstracts delivered to your In-box?

Enter search terms and have AI summaries delivered each week - change queries or unsubscribe any time!