Inflammatory stimuli result in vascular leakage with potentially life threatening consequences. As a key barrier component, loss of vascular endothelial (VE-) cadherin-mediated adhesion often precedes endothelial breakdown. This study aimed to stabilize VE-cadherin transinteraction and endothelial barrier function using peptides targeting the VE-cadherin adhesive interface. After modelling the transinteracting VE-cadherin structure, an inhibiting single peptide (SP) against a VE-cadherin binding pocket was selected, which specifically blocked VE-cadherin transinteraction as analyzed by single molecule atomic force microscopy (AFM). The tandem peptide (TP) consisting of two SP sequences in tandem was designed to strengthen VE-cadherin adhesion by simultaneously binding and cross-bridging two interacting cadherin molecules. Indeed, in AFM experiments TP specifically rendered VE-cadherin transinteraction resistant against an inhibitory monoclonal antibody. Moreover, TP reduced VE-cadherin lateral mobility and enhanced binding of VE-cadherin-coated microbeads to cultured endothelial cells, but acted independently of the actin cytoskeleton. TP also stabilized endothelial barrier properties against the Ca(2+) ionophore A23187 and the inhibitory antibody. Finally, TP abolished endothelial permeability increase induced by tumour necrosis factor-alpha in microperfused venules in vivo. Stabilization of VE-cadherin adhesion by cross-bridging peptides may therefore be a novel therapeutic approach for the treatment of vascular hyperpermeability.
Download full-text PDF |
Source |
---|---|
http://dx.doi.org/10.1242/jcs.040212 | DOI Listing |
J Cell Biol
May 2018
Department of Biology, University of Pennsylvania, Philadelphia, PA
Adherens junctions (AJs) are mechanosensitive cadherin-based intercellular adhesions that interact with the actin cytoskeleton and carry most of the mechanical load at cell-cell junctions. Both Arp2/3 complex-dependent actin polymerization generating pushing force and nonmuscle myosin II (NMII)-dependent contraction producing pulling force are necessary for AJ morphogenesis. Which actin system directly interacts with AJs is unknown.
View Article and Find Full Text PDFJ Cell Biol
January 2015
Department of Cell Biology, Yale University School of Medicine, New Haven, CT 06510.
The role of the RhoGTPase Rac1 in stabilizing mature endothelial adherens junctions (AJs) is not well understood. In this paper, using a photoactivatable probe to control Rac1 activity at AJs, we addressed the relationship between Rac1 and the dynamics of vascular endothelial cadherin (VE-cadherin). We demonstrated that Rac1 activation reduced the rate of VE-cadherin dissociation, leading to increased density of VE-cadherin at AJs.
View Article and Find Full Text PDFJ Cell Sci
May 2009
University of Würzburg, Institute of Anatomy and Cell Biology, Koellikerstr. 6, D-97070 Würzburg, Germany.
Inflammatory stimuli result in vascular leakage with potentially life threatening consequences. As a key barrier component, loss of vascular endothelial (VE-) cadherin-mediated adhesion often precedes endothelial breakdown. This study aimed to stabilize VE-cadherin transinteraction and endothelial barrier function using peptides targeting the VE-cadherin adhesive interface.
View Article and Find Full Text PDFJ Mol Biol
April 2008
Department of Cellular Neurobionics, Institute of Zoology, RWTH-Aachen University, D-52056 Aachen, Germany.
Cadherins are calcium-dependent adhesion molecules important for tissue morphogenesis and integrity. LI-cadherin and E-cadherin are the two prominent cadherins in intestinal epithelial cells. Whereas LI-cadherin belongs to the subfamily of 7D (seven-domain)-cadherins defined by their seven extracellular cadherin repeats and short intracellular domain, E-cadherin is the prototype of classical cadherins with five extracellular domains and a highly conserved cytoplasmic part that interacts with catenins and thereby modulates the organization of the cytoskeleton.
View Article and Find Full Text PDFEnter search terms and have AI summaries delivered each week - change queries or unsubscribe any time!