The population-level dynamics of maternally transmitted endosymbionts, including reproductive parasites, depends primarily on the fitness effects and transmission fidelity of these infections. Although experimental laboratory studies have shown that within-host endosymbiont density can affect both of these factors, the existence of such effects in natural populations has not yet been documented. Using quantitative PCR, we survey the density of male-killing Wolbachia in natural populations of Drosophila innubila females from the Chiricahua Mountains of Arizona. We find that there is substantial (20 000-fold) variation in Wolbachia density among wild flies and that within-host Wolbachia density is positively correlated with both the efficacy of male killing and maternal transmission fidelity. Mean Wolbachia density increases three- to five-fold from early to late in the season. This pattern suggests that Wolbachia density declines with fly age, a conclusion corroborated by a laboratory study of Wolbachia density as a function of age. Finally, we suggest three alternative hypotheses to account for the approximately lognormal distribution of Wolbachia density among wild flies.
Download full-text PDF |
Source |
---|---|
http://www.ncbi.nlm.nih.gov/pmc/articles/PMC2839946 | PMC |
http://dx.doi.org/10.1098/rspb.2009.0287 | DOI Listing |
Acta Trop
December 2024
Department of Marine Biology, Texas A&M University at Galveston, 200 Seawolf Parkway, Galveston, TX 77554, USA.
Mosquito-borne diseases pose a significant threat to global health, and traditional mosquito control methods often fall short of effectiveness. A promising alternative is the biological control strategy of transinfecting mosquitoes with Wolbachia, a bacterium capable of outcompeting harmful pathogens and reducing the ability of mosquitoes to transmit diseases. However, Wolbachia infections are sensitive to abiotic environmental factors such as temperature and humidity, which can affect their densities in mosquitoes and, consequently, their ability to block pathogens.
View Article and Find Full Text PDFFront Insect Sci
December 2024
Department of Plant Medicine, National Pingtung University of Science and Technology, Neipu, Pingtung, Taiwan.
The horizontal transmission of endosymbionts between hosts and parasitoids plays a crucial role in biological control, yet its mechanisms remain poorly understood. This study investigates the dynamics of horizontal transfer of (Ccep) from the rice moth, , to its parasitoid, . Through PCR detection and phylogenetic analysis, we demonstrated the presence of identical Ccep strains in both host and parasitoid populations, providing evidence for natural horizontal transmission.
View Article and Find Full Text PDFmSphere
December 2024
Australian Infectious Disease Research Centre, School of Biological Sciences, The University of Queensland, Brisbane, Queensland, Australia.
Vigilin is a large and evolutionary conserved RNA-binding protein (RBP), which can interact with RNA through its KH domain. Vigilin is, therefore, a multifunctional protein reported to be associated with RNA transport and metabolism, sterol metabolism, chromosome segregation, carcinogenesis, and heterochromatin-mediated gene silencing. The receptor for activated C kinase 1 (RACK1) is another highly conserved protein involved in many cellular pathways.
View Article and Find Full Text PDFbioRxiv
December 2024
Department of Biological Sciences, Lehigh University, Bethlehem, Pennsylvania, USA.
is the most widespread animal-associated intracellular microbe, living within the cells of over half of insect species. Since they can suppress pathogen replication and spread rapidly through insect populations, is at the vanguard of public health initiatives to control mosquito-borne diseases. 's abilities to block pathogens and spread quickly are closely linked to their abundance in host tissues.
View Article and Find Full Text PDFJ Insect Physiol
December 2024
School of Life Sciences, Hubei Key Laboratory of Genetic Regulation and Integrative Biology, Central China Normal University, Wuhan 430079, China. Electronic address:
Wolbachia, as a widely infected intracellular symbiotic bacterium in Arthropoda, is able to manipulate the reproduction of insect hosts for facilitating their own transmission. Cytoplasmic incompatibility (CI) is the most common phenotype that Wolbachia induced in insect hosts where they resulted in the failure of uninfected egg hatch when fertilized with the sperm derived from Wolbachia-infected males, suggesting that the sperm are modified by Wolbachia during spermatogenesis. Although the molecular mechanisms of CI are beginning to be understood, the effects of Wolbachia on the symbiotic relationship and the proper dynamics of spermatogenesis have not yet been fully investigated.
View Article and Find Full Text PDFEnter search terms and have AI summaries delivered each week - change queries or unsubscribe any time!