AI Article Synopsis

  • KCNH2 gene mutations cause type 2 congenital long QT syndrome by disrupting the I(Kr) ion channel, making individuals susceptible to arrhythmias triggered by sudden loud noises.
  • The study examined how alpha(1A)-adrenergic receptors and cAMP influence I(Kr) currents in both HL-1 cardiomyocytes and CHO cells with various Kv11.1 channel mutations.
  • Results indicated that phenylephrine reduced I(Kr) function and altered its activation properties, while forskolin and IBMX had complex effects, revealing loss-of-function characteristics in mutant channels when co-expressed with normal ones.

Article Abstract

Background: KCNH2 gene mutations disrupting rapid component of I(K) (I(Kr)) underlie type 2 congenital long QT syndrome (LQT2). Startled auditory stimuli are specific symptomatic triggers in LQT2, thus suggesting fast arrhythmogenic mechanism.

Objective: We investigated acute alpha(1A)- and cyclic adenosine monophosphate (cAMP)-related beta-adrenergic modulation of I(Kr) in HL-1 cardiomyocytes, wild type (WT)- and 2 LQT2-associated mutant Kv11.1 channels (Y43D- and K595E-Kv11.1) reconstituted in Chinese hamster ovary (CHO) cells.

Methods: I(Kr) and Kv11.1 currents were recorded using the whole-cell patch-clamp technique and confocal microscopy of HL-1 cardiomyocytes transfected with green fluorescent protein (GFP)-tagged pleckstrin homology domain of phospholipase C-delta(1) visualized fluctuations of membrane phosphatidylinositol 4,5-bisphosphate (PIP(2)) content.

Results: In HL-1 cardiomyocytes expressing human alpha(1A)-adrenoceptor, superfusion with phenylephrine significantly reduced I(Kr) amplitude, shifted current activation to more positive potentials, and accelerated kinetics of deactivation. Confocal images showed a decline of membrane PIP(2) content during phenylephrine exposure. Simultaneous application of adenylyl cyclase activator forskolin and phosphodiesterase inhibitor 3-isobutyl-1-methylxantine (IBMX) shifted I(Kr) activation to more negative potentials and decreased tail current amplitudes after depolarizations between +10 and +50 mV. In CHO cells, alpha(1A)-adrenoceptor activation downregulated WT-Kv11.1 channels and forskolin/IBMX produced a dual effect. Expressed alone, the Y43D-Kv11.1 or K595E-Kv11.1 channel had no measurable function. However, co-expression of WT-Kv11.1 and each mutant protein evoked currents with loss-of-function alterations but identical to WT-Kv11.1 alpha(1A)- and forskolin/IBMX-induced regulation.

Conclusion: Acute adrenergic regulation of at least 2 Kv11.1 mutant channels is preserved as in WT-Kv11.1 and native I(Kr). Suppression of alpha(1A)-adrenoceptor-related transduction might have therapeutic implications in some cases of LQT2.

Download full-text PDF

Source
http://dx.doi.org/10.1016/j.hrthm.2009.02.045DOI Listing

Publication Analysis

Top Keywords

hl-1 cardiomyocytes
12
adrenergic regulation
8
rapid component
8
ikr
6
regulation rapid
4
component delayed
4
delayed rectifier
4
rectifier current
4
current implications
4
implications arrhythmogenesis
4

Similar Publications

Hypoxia/reoxygenation (HR) often occurs under cardiac pathological conditions, and HR-induced oxidative stress usually leads to cardiomyocyte damage. Carvedilol, a non-selective β-blocker, is used clinically to treat cardiac ischemia diseases. Moreover, Carvedilol has also been reported to have an antioxidant ability by reducing lipid peroxidation.

View Article and Find Full Text PDF

Calcium Phosphate Nanoparticles Functionalized with a Cardio-Specific Peptide.

Nanomaterials (Basel)

January 2025

Institute of Science, Technology and Sustainability for Ceramics (ISSMC), National Research Council (CNR), 48018 Faenza, Italy.

Cardiovascular diseases (CVDs) remain the leading cause of mortality worldwide, highliting the urgent need for new therapeutic strategies. Peptide-based therapies have demonstrated significant potential for treating CVDs; however, their clinical application is hindered by their limited stability in physiological fluids. To overcome this challenge, an effective drug delivery system is essential to protect and efficiently transport peptides to their intended targets.

View Article and Find Full Text PDF

Mitochondrial dysfunction and ferroptosis play crucial roles in myocardial ischemia/reperfusion (I/R) following heart transplantation. Microsomal glutathione s transferase 1 (MGST1) is widely distributed in mitochondria and has a protective effect against ferroptosis, and its involvement in myocardial I/R injury has not yet been elucidated. In this study, donor hearts from C57BL/6 male mice were subjected to 12 h of ex-vivo cold ischemia treatment and transplanted into the abdomen of recipient mice for 24 h of reperfusion.

View Article and Find Full Text PDF

[Mechanism of ginsenoside Rg_1 in regulating autophagy through miR-155/Notch1/Hes1 pathway to attenuate hypoxia/reoxygenation injury in HL-1 cells].

Zhongguo Zhong Yao Za Zhi

December 2024

School of Traditional Chinese Medicine, Binzhou Medical College Yantai 264003, China Institute of Basic Medicine, Xiyuan Hospital, China Academy of Chinese Medical Sciences Beijing 100091, China.

This article explored the specific mechanism by which ginsenoside Rg_1 regulates cellular autophagy to attenuate hypoxia/reoxygenation(H/R) injury in HL-1 cardiomyocytes through the microRNA155(miR-155)/neurogenic gene Notch homologous protein 1(Notch1)/hairy and enhancer of split 1(Hes1) pathway. An HL-1 cell model with H/R injury was constructed, and ginsenoside Rg_1 and/or Notch1 inhibitor DAPT and miR-155 mimics were used to treat cells. Cell counting kit(CCK)-8 was used to detect the relative viability of HL-1 cells with H/R injury.

View Article and Find Full Text PDF

Crown ethers have been shown to have physiological effects ascribed to their ionophoric properties. However, high levels of toxicity precluded interest in their evaluation as therapeutic agents. We prepared new silacrown analogs of crown ethers.

View Article and Find Full Text PDF

Want AI Summaries of new PubMed Abstracts delivered to your In-box?

Enter search terms and have AI summaries delivered each week - change queries or unsubscribe any time!