Trifluralin is a herbicide capable of interfering in mitotic cell division due to either microtubule depolymerization or alteration in the concentration of calcium ions within the cell. The aim of this study was to investigate the effects of trifluralin in Allium cepa meristematic cells, evaluating the induction mechanisms of the chromosomal and nuclear aberrations. In this study, A. cepa root tips were submitted for 24h treatment to several concentrations of this herbicide and 48 h recovery post-treatment. The results showed that some concentrations of trifluralin can lead to a mitotic index inhibition, besides inducing chromosomal and nuclear alterations throughout the mitotic cycle. Some of the alterations found seem to be resulting from the herbicide action in different phases and in more than one consecutive cell cycle.

Download full-text PDF

Source
http://dx.doi.org/10.1016/j.ecoenv.2009.03.014DOI Listing

Publication Analysis

Top Keywords

chromosomal nuclear
8
origin nuclear
4
nuclear chromosomal
4
chromosomal alterations
4
alterations derived
4
derived action
4
action aneugenic
4
aneugenic agent--trifluralin
4
herbicide
4
agent--trifluralin herbicide
4

Similar Publications

Basic Science and Pathogenesis.

Alzheimers Dement

December 2024

Homi Bhabha National Institute, Mumbai, Maharashtra, India.

Background: Recent advances in understanding the regulatory networks implicated in Alzheimer's Disease (AD) evinces the involvement of long non-coding RNAs (lncRNAs) as crucial regulatory players. The present study explores the role played by maternally imprinted lncRNA XIST in regulating the sex-biased prevalence of AD.

Method: With whole transcriptomic sequencing data from the hippocampal RNA of post-mortem AD brains from humans and APP/PS1 mice, the altered expression of XIST in AD was studied.

View Article and Find Full Text PDF

Basic Science and Pathogenesis.

Alzheimers Dement

December 2024

Northwestern University, Chicago, IL, USA.

Background: Much attention has been paid to the role of the perenchymal brain immune response in Alzheimer's disease (AD). Yet, the peripheral immune system in AD has not been thoroughly studied with modern sequencing methods.

Method: Here, we used a combination of single-cell sequencing strategies, including assay for transposase-accessible chromatin and RNA sequencing, to investigate the epigenetic and transcriptional alterations to the AD peripheral immune system.

View Article and Find Full Text PDF

Background: Disease-causing copy-number variants (CNVs) often encompass contiguous genes and can be detected using chromosomal microarray analysis (CMA). Conversely, CNVs affecting single disease-causing genes have historically been challenging to detect due to their small sizes.

Methods: A custom comprehensive CMA (Baylor College of Medicine - BCM v11.

View Article and Find Full Text PDF

The DNA damage checkpoint is a highly conserved signaling pathway induced by genotoxin exposure or endogenous genome stress. It alters many cellular processes such as arresting the cell cycle progression and increasing DNA repair capacities. However, cells can downregulate the checkpoint after prolonged stress exposure to allow continued growth and alternative repair.

View Article and Find Full Text PDF

AUK3 is required for faithful nuclear segregation in the bloodstream form of Trypanosoma brucei.

Mol Biochem Parasitol

December 2024

University of Glasgow Centre for Parasitology, School of Infection and Immunity, Sir Graeme Davies Building, 120 University Place, Glasgow, G12 8TA, United Kingdom. Electronic address:

Eukaryotic chromosomes segregate faithfully prior to nuclear division to ensure genome stability. If segregation becomes defective, the chromosome copy number of the cell may alter leading to aneuploidy and/or polyploidy, both common hallmarks of cancers. In eukaryotes, aurora kinases regulate chromosome segregation during mitosis and meiosis, but their functions in the divergent, single-celled eukaryotic pathogen Trypanosoma brucei are less understood.

View Article and Find Full Text PDF

Want AI Summaries of new PubMed Abstracts delivered to your In-box?

Enter search terms and have AI summaries delivered each week - change queries or unsubscribe any time!