The patterns of spontaneous Ca2+ signals generated by ventral spinal neurons in vitro show time-dependent refinement.

Eur J Neurosci

Physiology and Pathology Department, Centre for Neuroscience BRAIN, University of Trieste, via Fleming 22, 34127 Trieste, Italy.

Published: April 2009

Embryonic spinal neurons maintained in organotypic slice culture are known to mimic certain maturation-dependent signalling changes. With such a model we investigated, in embryonic mouse spinal segments, the age-dependent spatio-temporal control of intracellular Ca(2+) signalling generated by neuronal populations in ventral circuits and its relation with electrical activity. We used Ca(2+) imaging to monitor areas located within the ventral spinal horn at 1 and 2 weeks of in vitro growth. Primitive patterns of spontaneous neuronal Ca(2+) transients (detected at 1 week) were typically synchronous. Remarkably, such transients originated from widespread propagating waves that became organized into large-scale rhythmic bursts. These activities were associated with the generation of synaptically mediated inward currents under whole-cell patch-clamp. Such patterns disappeared during longer culture of spinal segments: at 2 weeks in culture, only a subset of ventral neurons displayed spontaneous, asynchronous and repetitive Ca(2+) oscillations dissociated from background synaptic activity. We observed that the emergence of oscillations was a restricted phenomenon arising together with the transformation of ventral network electrophysiological bursting into asynchronous synaptic discharges. This change was accompanied by the appearance of discrete calbindin immunoreactivity against an unchanged background of calretinin-positive cells. It is attractive to assume that periodic oscillations of Ca(2+) confer a summative ability to these cells to shape the plasticity of local circuits through different changes (phasic or tonic) in intracellular Ca(2+).

Download full-text PDF

Source
http://dx.doi.org/10.1111/j.1460-9568.2009.06708.xDOI Listing

Publication Analysis

Top Keywords

patterns spontaneous
8
ventral spinal
8
spinal neurons
8
spinal segments
8
intracellular ca2+
8
ca2+
7
ventral
5
spinal
5
spontaneous ca2+
4
ca2+ signals
4

Similar Publications

Sub-Chronic 30 mg/kg Iron Treatment Induces Spatial Cognition Impairment and Brain Oxidative Stress in Wistar Rats.

Biol Trace Elem Res

January 2025

Laboratory Functional Physiology and Bio-Resources Valorisation, Higher Institute of Biotechnology of Beja, University of Jendouba, Avenue Habib Bourguiba BP 382, 9000, Beja, Tunisia.

Iron overload has been shown to have deleterious effects in the brain through the formation of reactive oxygen species, which ultimately may contribute to neurodegenerative disorders. Accordingly, rodent studies have indicated that systemic administration of iron produces excess iron in the brain and results in behavioral and cognitive deficits. To what extent cognitive abilities are affected and which neurobiological mechanisms underlie those deficits remain to be more fully characterized.

View Article and Find Full Text PDF

Background: To assess the integrity of the developing nervous system, the Prechtl general movement assessment (GMA) is recognized for its clinical value in diagnosing neurological impairments in early infancy. GMA has been increasingly augmented through machine learning approaches intending to scale-up its application, circumvent costs in the training of human assessors and further standardize classification of spontaneous motor patterns. Available deep learning tools, all of which are based on single sensor modalities, are however still considerably inferior to that of well-trained human assessors.

View Article and Find Full Text PDF

Existing literature offers some insights into the prevalence of anxiety and depression in children with chronic spontaneous urticaria (CSU). However, the literature on anxiety sensitivity (AS) and quality of life (QoL) in these children remains poorly understood. This study aimed to evaluate psychiatric diagnoses, anxiety and depression levels, AS, and QoL in children with CSU compared to healthy controls.

View Article and Find Full Text PDF

Previous research has shown that students employ intuitive thinking when understanding scientific concepts. Three types of intuitive thinking-essentialist, teleological, and anthropic thinking-are used in biology learning and can lead to misconceptions. However, it is unknown how commonly these types of intuitive thinking, or cognitive construals, are used spontaneously in students' explanations across biological concepts and whether this usage is related to endorsement of construal-consistent misconceptions.

View Article and Find Full Text PDF

Genistein-3'-sodium sulfonate suppresses NLRP3-mediated cell pyroptosis after cerebral ischemia.

Metab Brain Dis

January 2025

Key Laboratory of Prevention and treatment of cardiovascular and cerebrovascular diseases of Ministry of Education, Gannan Medical University, Ganzhou, 341000, China.

Cerebral ischemia-induced pyroptosis contributes to the dissemination of neuroinflammation, and Nod-like receptor protein-3 (NLRP3) inflammasome plays a key role in this process. Previous studies have indicated that Genistein-3'-sodiumsulfonate (GSS) can inhibit neuroinflammation caused by cerebral ischemia, exert cerebroprotective effects, but its specific mechanism has not been comprehensively understood. The aim of this study was to explore the effect of GSS on ischemic stroke-induced cell pyroptosis.

View Article and Find Full Text PDF

Want AI Summaries of new PubMed Abstracts delivered to your In-box?

Enter search terms and have AI summaries delivered each week - change queries or unsubscribe any time!