The structural and spectroscopic properties of new heteroleptic iridium complexes having a biphenyl and two bipyridyl based ligands are reported; DFT calculations reveal that the HOMO is composed of the biphenyl and iridium d orbitals while the LUMO is localized mainly on the two bipyridyl based ligands.

Download full-text PDF

Source
http://dx.doi.org/10.1039/b904016cDOI Listing

Publication Analysis

Top Keywords

bipyridyl based
12
based ligands
12
heteroleptic iridium
8
iridium complexes
8
complexes biphenyl-22'-diyl
4
biphenyl-22'-diyl bipyridyl
4
ligands structural
4
structural spectroscopic
4
spectroscopic properties
4
properties heteroleptic
4

Similar Publications

Amplified electrochemiluminescence of Ru(dcbpy) via coreactant active sites on nitrogen-doped graphene quantum dots.

Talanta

January 2025

School of Agricultural Engineering, Key Laboratory of Modern Agricultural Equipment and Technology, Ministry of Education, Jiangsu University, Zhenjiang, Jiangsu, 212013, China; College of Agricultural Equipment Engineering, Henan University of Science and Technology, Luoyang, Henan, 471003, China. Electronic address:

Searching for new alternative to tripropylamine (TPrA) with low toxicity and high chemical stability for the tris(4,4'-dicarboxylic acid-2,2'-bipyridyl)ruthenium (II) (Ru(dcbpy)) based coreactant electrochemiluminescence (ECL) system is essential for widespread analytical applications. Here, nitrogen-doped graphene quantum dots (NGQDs) have been discovered to significantly amplify the ECL emission and increase the ECL efficiency of Ru(dcbpy) for the first time. However, the mechanism by which NGQDs act as coreactants is not well comprehended.

View Article and Find Full Text PDF

The electrochemical proton reactivity of transition metal complexes has received intensive attention in catalyst research. The proton-coupled electron transfer (PCET) process, influenced by the coordination geometry, determines the catalytic reaction mechanisms. Additionally, the p value of a proton source, as an external factor, plays a crucial role in regulating the proton transfer step.

View Article and Find Full Text PDF

Herein, the photophysical, photochemical properties and photogenerated excited state dynamics of two new Ru(II) complexes, viz. [Ru(p-ttp)(bpy)(PTA)]2+ [1]2+, [Ru(p-ttp)(phen)(PTA)]2+ [2]2+ having a phosphorus-based ligand PTA [p-ttp = p-tolyl terpyridine; bpy = 2,2'-bipyridyl; phen = 1,10-phenthroline and PTA = 1,3,5-triaza-7-phosphaadamantane] are reported. Upon excitation with 470 nm LED, [1]2+ and [2]2+ neither undergo ligand release nor exhibit room temperature luminescence/1O2 generation.

View Article and Find Full Text PDF
Article Synopsis
  • The flexibility of 2,2'-bipyridyl-based diamine and coordination domain denticity allowed for the creation of four different structures stabilized by silver-silver pairs.
  • Reactions with 2,6-diformylpyridine produced silver(I)-stabilized molecular tweezer, trefoil knot, and Solomon link.
  • The 1,8-naphthyridine-based dialdehyde led to the formation of [2]catenanes and trefoil knot, with notable close distances between silver ions and two assemblies exhibiting interesting luminescent properties.
View Article and Find Full Text PDF

All-inorganic cesium lead halide (CsPbX, X = Cl, Br, I) perovskite quantum dots (PeQDs) are successfully incorporated within the cages of zirconium-based UiO-series metal-organic frameworks (MOFs) using in situ ship-in-a-bottle method at room temperature under ambient conditions. The resulting mBPP-MOF, which includes the 4,4'-(2,2'-bipyridyl-5,5'-diyl)dibenzoic acid (HBPP) linker, features a larger cavity size than UiO-66 and UiO-67-bpy, allowing for uniform accommodation of PeQDs within its cages. This PeQDs@MOF hybrid heterostructure enhances the separation and transfer of photogenerated charges, enabling the synthesized CsPbBr@mBPP-MOF to demonstrate highly selective and stable performance in the photocatalytic oxidation of toluene under visible light irradiation at 395 nm.

View Article and Find Full Text PDF

Want AI Summaries of new PubMed Abstracts delivered to your In-box?

Enter search terms and have AI summaries delivered each week - change queries or unsubscribe any time!