Wire- and belt-like single-crystalline titanium dioxide nanostructures were synthesized by using a simple thermal annealing method, which has often been avoided for the synthesis of metal oxide nanostructures from high melting point metals such as Ti. The synthesis method requires neither high reaction temperature nor complicated reaction processes, and can be used for producing dense nanomaterials with relatively short reaction time at temperatures much lower than the melting point of titanium and titanium dioxide. Key synthesis factors including the choice of eutectic catalyst, growth temperature, and annealing time were systematically investigated. The synthesis reaction was promoted by a copper eutectic catalyst, producing long nanostructures with short reaction times. For example, it was observed that only 30 min of annealing time at 850 degrees C was enough to produce densely grown approximately 10 microm long nanowires with diameters of approximately 100 nm, and longer reaction time brought about morphology changes from wires to belts as well as producing longer nanostructures up to approximately 30 microm. The nanostructures have the crystalline rutile structure along the [Formula: see text] growth direction. Finally, our simple and effective method for the synthesis of TiO2 nanostructures could be utilized for growing other metal oxide nanowires from high melting temperature metals.
Download full-text PDF |
Source |
---|---|
http://dx.doi.org/10.1088/0957-4484/20/10/105608 | DOI Listing |
Acta Biomater
January 2025
Zhejiang Trusyou Medical Instruments Co., Ltd.,325000, China.
Titanium dioxide nanotube arrays (TNTs) generated in situ on the surface of dental implants have been shown to enhance bone integration for load-bearing support while managing load distribution and energy dissipation to prevent bone resorption from overload. However, their inadequate stability limits the clinical use of conventional TNTs. This study introduces an innovative approach to improve the mechanical stability of TNTs while maintaining their bone-integration efficiency.
View Article and Find Full Text PDFJ Hazard Mater
January 2025
School of Environmental and Municipal Engineering, Xi'an University of Architecture and Technology, Xi'an 710055, China; Shaanxi Key Laboratory of Environmental Engineering, Xi'an University of Architecture and Technology, Xi'an 710055, China. Electronic address:
Nitrate pollution poses severe risks to aquatic ecosystems and human health. The electrocatalytic nitrate reduction reaction (NITRR) offers a promising environmental and economic solution for nitrate pollution treatment and nitrogen source recovery; however, it continues to experience limited efficiency in neutral electrolytes. This study explores the heterointerface activation effects of TiO/CuO heterogeneous catalysts with rutile (R-TiO) and anatase (A-TiO) phases and reveals that R-TiO is an active crystal phase with high nitrate reduction performance.
View Article and Find Full Text PDFChemistryOpen
January 2025
Facultad de Ciencias Básicas, Universidad de Medellín, 050026, Medellín, Colombia.
Conversion of glycerol to added-value products is desirable due to its surplus during biodiesel synthesis. TiO has been the most explored catalyst. We performed a systematic study of glycerol adsorption on anatase (101), anatase (001), and rutile (110) TiO at the Density Functional Theory level.
View Article and Find Full Text PDFNat Commun
January 2025
Department of Chemical and Environmental Engineering, Yale University, New Haven, CT, USA.
Discharge of wastewater containing nitrate (NO) disrupts aquatic ecosystems even at low concentrations. However, selective and rapid reduction of NO at low concentration to dinitrogen (N) is technically challenging. Here, we present an electrified membrane (EM) loaded with Sn pair-atom catalysts for highly efficient NO reduction to N in a single-pass electrofiltration.
View Article and Find Full Text PDFPoult Sci
January 2025
Department of Animal Science, University of Zabol, Zabol 98661-5538, Iran. Electronic address:
Calcium (Ca) is necessary for bone health and metabolic functions in poultry, however, the extent to which it can be utilized varies among feed ingredients. The goal of this study was to determine the apparent ileal digestibility (AID) and standardized ileal digestibility (SID) of calcium in wheat and soybean meal (SBM) in young quail chicks using a direct method. Three dietary treatments were used in the experiment: a calcium-free basal diet to determine endogenous calcium losses, and two diets with either wheat or SBM as the primary calcium sources.
View Article and Find Full Text PDFEnter search terms and have AI summaries delivered each week - change queries or unsubscribe any time!