Single-crystalline indium tin oxide (ITO) nanowires (NWs) were grown by the standard thermal evaporation method. The as-grown NWs were typically 100-300 nm in diameter and a few microm long. Four-probe submicron Ti/Au electrodes on individual NWs were fabricated by the electron-beam lithography technique. The resistivities of several single NWs have been measured from 300 down to 1.5 K. The results indicate that the as-grown ITO NWs are metallic, but disordered. The overall temperature behavior of resistivity can be described by the Bloch-Grüneisen law plus a low-temperature correction due to the scattering of electrons off dynamic point defects. This observation suggests the existence of numerous dynamic point defects in as-grown ITO NWs.

Download full-text PDF

Source
http://dx.doi.org/10.1088/0957-4484/20/10/105203DOI Listing

Publication Analysis

Top Keywords

indium tin
8
tin oxide
8
as-grown ito
8
ito nws
8
dynamic point
8
point defects
8
nws
6
four-probe electrical-transport
4
electrical-transport measurements
4
measurements single
4

Similar Publications

A Highly Sensitive Creatine Kinase Detection in Human Serum using 11-mercaptoundecanoic acid Modified ITO-PET Electrodes.

Anal Biochem

January 2025

Çanakkale Onsekiz Mart University, Faculty of Engineering, Bioengineering Department, Çanakkale-TURKEY. Electronic address:

The enzyme creatine kinase (CK) is a biomarker that plays an extremely significant role in the early detection of cardiovascular disorders. Serum levels of CK are regularly monitored in patients with heart attacks, one of the most critical cardiovascular illnesses. In this study, a highly sensitive electrochemical immunosensor system was designed for the importance of early diagnosis of CK.

View Article and Find Full Text PDF

Preparation of Molecularly Imprinted Electrochemical Sensors and Analysis of the Doping of Epinephrine in Equine Blood.

Sensors (Basel)

December 2024

Shandong Provincial Key Laboratory of Monocrystalline Silicon Semiconductor Materials and Technology, Shandong Provincial Engineering Research Center of Organic Functional Materials and Green Low-Carbon Technology, Shandong Universities Engineering Research Center of Integrated Circuits Functional Materials and Expanded Applications, College of Chemistry and Chemical Engineering, Dezhou University, Dezhou 253023, China.

In this paper, a novel molecularly imprinted polymer membrane modified glassy carbon electrode for electrochemical sensors (MIP-OH-MWCNTs-GCE) for epinephrine (EP) was successfully prepared by a gel-sol method using an optimized functional monomer oligosilsesquioxane-AlO sol-ITO composite sol (ITO-POSS-AlO). Hydroxylated multi-walled carbon nanotubes (OH-MWCNTs) were introduced during the modification of the electrodes, and the electrochemical behavior of EP on the molecularly imprinted electrochemical sensors was probed by the differential pulse velocity (DPV) method. The experimental conditions were optimized.

View Article and Find Full Text PDF

Mimicking Axon Growth and Pruning by Photocatalytic Growth and Chemical Dissolution of Gold on Titanium Dioxide Patterns.

Molecules

December 2024

Chair for Integrated Systems and Photonics, Department of Electrical and Information Engineering, Faculty of Engineering, Kiel University, Kaiserstr. 2, 24143 Kiel, Germany.

Biological neural circuits are based on the interplay of excitatory and inhibitory events to achieve functionality. Axons form long-range information highways in neural circuits. Axon pruning, i.

View Article and Find Full Text PDF

Covalent Organic Framework Nanofilm-Assisted Laser Desorption Ionization Mass Spectrometry for Rapid Screening of Parabens in Personal Care Products.

Rapid Commun Mass Spectrom

April 2025

State Key Laboratory of Environmental and Biological Analysis, Department of Chemistry, Hong Kong Baptist University, Hong Kong SAR, China.

Rational: People are widely exposed to parabens in their daily life, but parabens are endocrine disrupting chemicals that pose a threat to human health. Therefore, establishing a rapid screening method to enhance monitoring of parabens is necessary. Herein, a covalent organic framework (COF) nanofilm-assisted laser desorption ionization mass spectrometry (LDI-MS) method was established to screen parabens in personal care products (PCPs).

View Article and Find Full Text PDF

Functionalized Substrates for Reduced Nonradiative Recombination in Metal-Halide Perovskites.

J Phys Chem Lett

January 2025

Molecular Materials and Nanosystems & Institute for Complex Molecular Systems, Eindhoven University of Technology, P.O. Box 513, 5600 MB Eindhoven, The Netherlands.

Reducing nonradiative recombination is crucial for minimizing voltage losses in metal-halide perovskite solar cells and achieving high power conversion efficiencies. Photoluminescence spectroscopy on complete or partial perovskite solar cell stacks is often used to quantify and disentangle bulk and interface contributions to nonradiative losses. Accurately determining the intrinsic loss in a perovskite layer is key to analyzing the origins of nonradiative recombination and developing defect engineering strategies.

View Article and Find Full Text PDF

Want AI Summaries of new PubMed Abstracts delivered to your In-box?

Enter search terms and have AI summaries delivered each week - change queries or unsubscribe any time!