The preparation of a plasmonically resonant VO2 thermochromic pigment.

Nanotechnology

Institute for Nanoscale Technology, University of Technology Sydney, PO Box 123, Broadway, NSW 2007, Australia.

Published: February 2009

Vanadium dioxide (VO(2)) undergoes a reversible metal-insulator transition, normally at approximately 68 degrees C. While the properties of continuous semi-transparent coatings of VO(2) are well known, there is far less information available concerning the potential use of discrete VO(2) nanoparticles as a thermochromic pigment in opaque coatings. Individual VO(2) nanoparticles undergo a localized plasmon resonance with near-infrared light at about 1100 nm and this resonance can be switched on and off by simply varying the temperature of the system. Therefore, incorporation of VO(2) nanoparticles into a coating system imbues the coating with the ability to self-adaptively modulate its own absorptive efficiency in the near-infrared. Here we examine the magnitude and control of this phenomenon. Prototype coatings are described, made using VO(2) powder produced by an improved process. The materials are characterized using calorimetry, x-ray diffraction, high-resolution scanning electron microscopy, transmission electron microscopy, and by measurement of optical properties.

Download full-text PDF

Source
http://dx.doi.org/10.1088/0957-4484/20/8/085607DOI Listing

Publication Analysis

Top Keywords

vo2 nanoparticles
12
thermochromic pigment
8
electron microscopy
8
vo2
7
preparation plasmonically
4
plasmonically resonant
4
resonant vo2
4
vo2 thermochromic
4
pigment vanadium
4
vanadium dioxide
4

Similar Publications

Novel technique to produce porous thermochromic VO nanoparticle films using gas aggregation source.

Sci Rep

January 2025

Department of Macromolecular Physics, Faculty of Mathematics and Physics, Charles University, V Holešovičkách 2, 180 00, Prague 8, Czech Republic.

Vanadium dioxide (VO) is a phase transition material that undergoes semiconductor-to-metal transition at the temperature of about 68 °C. This extraordinary feature triggered intensive research focused on the controlled synthesis of VO. In this study, we introduce and investigate an original linker- and solvent-free strategy enabling the production of highly porous VO nanoparticle-based films.

View Article and Find Full Text PDF

Vanadium dioxide (VO) has received significant interest in the context of nanophotonic metamaterials and memories owing to its reversible insulator-metal transition associated with significant changes in its optical and electronic properties. The phase transition of VO has been extensively studied for several decades, and the ways how to control its hysteresis characteristics relevant for memory applications have significantly improved. However, the hysteresis dynamics and stability of coexisting phases during the transition have not been studied on the level of individual single-crystal VO nanoparticles (NPs), although they represent the fundamental component of ordinary polycrystalline films and can also act like nanoscale memory units on their own.

View Article and Find Full Text PDF

Thermally and Electrically Regulated Plasmonic Devices Based on VO-Covered Gold Nanoplate Arrays with SiO Interface Layer for Large Plasmon Shifts.

ACS Appl Mater Interfaces

January 2025

Anhui Province Key Laboratory for Control and Applications of Optoelectronic Information Materials, School of Physics and Electronic Information, Anhui Normal University, 189 Jiuhua South Road, Wuhu 241003, China.

Integrating metal nanoparticles with vanadium dioxide (VO) is an effective means to realize active plasmonic regulation which has great application potential in optical devices that respond in real-time to external stimuli. However, the high temperature necessary for VO growth severely reshapes the metal nanoparticles, causing reduced refractive index (RI) sensitivity and degraded modulation performance. Herein, we construct a large-area dynamically tunable plasmonic system composed of a VO-covered array of hexagonal gold nanoplates (AuNPLs).

View Article and Find Full Text PDF

Theoretical Design of Smart Bionic Skins with Self-Adaptive Temperature Regulation.

Materials (Basel)

November 2024

Centre for Optical and Electromagnetic Research, State Key Lab of Modern Optical Instrumentation, College of Optical Science and Engineering, Zhejiang University, Hangzhou 310027, China.

Article Synopsis
  • Thermal management is a key issue in electric design, especially for compact electronic systems, and this study introduces a bionic skin model that mimics human skin to regulate temperature effectively.
  • The artificial skin features phase change material nanoparticles in a thin matrix on a metallic surface, enabling it to maintain a stable temperature around 340 K despite varying external heat conditions.
  • The design also includes a plasmonic surface made of silver nanocubes to enhance visible light properties while retaining infrared functionality, providing a cost-effective solution for advanced thermal management in robotics and similar technologies.
View Article and Find Full Text PDF

In this work, VO (M1/R) thin films were exploited as H gas sensors. A flat film morphology, obtained by furnace annealing, was compared with a laser-induced nanostructured one. The combination of the environmentally friendly sol-gel approach with the ultrafast laser crystallization allows for significant reductions in energy consumption and related emissions during the fabrication of VO sensors.

View Article and Find Full Text PDF

Want AI Summaries of new PubMed Abstracts delivered to your In-box?

Enter search terms and have AI summaries delivered each week - change queries or unsubscribe any time!