A novel one-pot neutral synthesis using bioinspired polymers to fabricate thiol-nanoparticles is presented. The thiol-particles may be directly tethered to metal surfaces such as gold, allowing the production of self-assembled nanostructured biocatalytic or biosensor surfaces. This one-pot method has also been used to entrap enzymes within the thiol-nanoparticles; it is apparent that once enzyme entrapment is carried out a bimodal distribution of particles is formed, with particles of one mode being very similar in size to thiol-nanoparticles without enzyme entrapped, and particles of the other mode being much larger in size. To this end, efforts have been made to separate the two modes of particles for the sample containing enzyme and it has been observed that the larger mode thiol-nanoparticles do indeed contain significant amounts of enzyme in comparison to the smaller mode ones. As the enzyme-containing thiol-nanoparticles can now be isolated, this means that there are many future possibilities for the use of thiol-particles containing enzyme, as they may be used in a wide range of processes and devices which require catalytic functionalized surfaces, such as biosensors and biocatalytic reactors.
Download full-text PDF |
Source |
---|---|
http://dx.doi.org/10.1088/0957-4484/20/5/055612 | DOI Listing |
RSC Adv
January 2025
Department of Chemistry, Carnegie Mellon University 4400 Fifth Avenue Pittsburgh PA 15213 USA
Polyurethanes (PU) make up a large portion of commodity plastics appearing in applications including insulation, footwear, and memory foam mattresses. Unfortunately, as thermoset polymers, polyurethanes lack a clear path for recycling and repurposing, creating a sustainability issue. Herein, using dynamic depolymerization, we demonstrate a simple one-pot synthesis for preparation of an upcycled polyurethane grafted graphene material (PU-GO).
View Article and Find Full Text PDFDalton Trans
January 2025
Beijing Key Laboratory of Energy Conversion and Storage Materials, College of Chemistry, Beijing Normal University, Beijing 100875, P. R. China.
Nowadays, benzimidazole and its derivatives are widely assembled into multifunctional materials with various properties such as mechanochromism, photochromism, thermochromism and electrochromism. Herein, two novel zinc(II) coordination compounds, [Zn(L)Br]·2HO (1) and [Zn(L)Cl]·2HO (2) (L = tetra(1-benzo[]imidazol-2-yl)ethene), have been constructed one-pot facile synthesis from bis(1-benzo[]imidazol-2-yl)methane (L) and zinc(II) salts. The ligand L with a CC double bond was formed by C-C coupling of two sp-C atoms of L in solvothermal synthesis, which provides a new strategy to generate the conjugation system conveniently.
View Article and Find Full Text PDFChem Asian J
January 2025
Chiang Mai University, Chemistry, 239 Huay Kaew Road, Muang District, 50200, Chiang Mai, THAILAND.
The Ph3P-I2-mediated reactions between isatins and amines were extensively investigated leading to the discovery of highly selective and divergent routes toward the synthesis of two distinct classes of indole-based frameworks. Through a strategic design of the reaction paths, we overcome potential side reactions to achieve convenient and straightforward one-pot methods to access either indoloquinazolines with C-12 carboxamide or 2-aminosubstituted indol-3-ones using the same reagent system. Mechanistic studies reveal the role of Ph3P-I2 in governing product selectivity, providing an efficient route to novel fused-indolone derivatives with promising applications in drug discovery and medicinal chemistry.
View Article and Find Full Text PDFOrg Lett
January 2025
Max-Planck-Institute for Chemical Energy Conversion, Stiftstraße 34-36, 45470 Mülheim an der Ruhr, Germany.
An electrochemical one-pot synthesis of enaminyl sulfonate esters was established, featuring a quasidivided cell under constant current conditions. The multicomponent reaction utilizes simple and readily available alkylamines and an easy-to-use stock solution of SO and alcohols. Omission of additional supporting electrolyte through in-situ-generated monoalkylsulfite facilitates the downstream processing.
View Article and Find Full Text PDFChem Commun (Camb)
January 2025
School of Chemistry and Chemical Engineering, Yangzhou University, Siwangting Road 180, 225002, Yangzhou, China.
As fundamental structural scaffolds in numerous natural products and pharmaceutical molecules, the construction of cyclohexenone architectures has remained a pivotal focus in organic chemistry. However, established strategies to synthesize cyclohexenone derivatives Dowd-Beckwith ring-expansion reaction invariably involve the use of transition metals and photoirradiation. Herein, we present a novel transition-metal- and photoirradiation-free pathway to access such structures from α-iodomethyl β-keto esters with electron-rich arenediazonium salts as inexpensive radical initiators and oxidants under mild reaction conditions.
View Article and Find Full Text PDFEnter search terms and have AI summaries delivered each week - change queries or unsubscribe any time!