Femtoliter silver cups as surface enhanced Raman scattering active containers.

Nanotechnology

Chemistry and Physics of Materials Unit, Jawaharlal Nehru Centre for Advanced Scientific Research, Jakkur PO, Bangalore 560064, India.

Published: January 2009

Femtoliter capacity Ag cups formed by the pulsed laser ablation of an Ag foil have been tried out as substrates for surface enhanced Raman scattering (SERS) measurements. The cups are formed as the impinging droplets from the laser plume undergo a flow pattern before freezing into cup-like structures, resulting in a surface roughness (approximately 35 nm) that makes them ideal for SERS studies. The internal volume of the cups is in the femtoliter (10(-15) l) range, well suited for small-scale reactions, particularly in biological studies. The cups exhibit enhancement factors of the order of 10(6) with the analyte molecule thiophenol. Individual cups have been dosed attoliter quantities (10(-18) l) of the analyte and detected.

Download full-text PDF

Source
http://dx.doi.org/10.1088/0957-4484/20/4/045504DOI Listing

Publication Analysis

Top Keywords

surface enhanced
8
enhanced raman
8
raman scattering
8
cups formed
8
cups
6
femtoliter silver
4
silver cups
4
cups surface
4
scattering active
4
active containers
4

Similar Publications

Light-Directed Self-Powered Metal-Organic Framework Based Nanorobots for Deep Tumor Penetration.

Adv Mater

December 2024

Frontiers Science Centre for High Energy Material, Advanced Technology Research Institute (Jinan), Key Laboratory of Cluster Science (Ministry of Education), Beijing Key Laboratory of Photoelectronic/Electrophotonic Conversion Materials, Advanced Research Institute of Multidisciplinary Science, School of Medical Technology, School of Chemistry and Chemical Engineering, Beijing Institute of Technology, Beijing, 100081, P. R. China.

Effective intratumoral distribution of anticancer agents with good tumor penetration is of great practical importance for oncotherapy. How to break the limitation of traditional passive drug delivery relying on blood circulatory system into solid tumors remains a challenge. Herein, a light-directed self-powered nanorobot based on zirconium-based porphyrin metal-organic framework (MOF) is reported for smart delivery of chemodrug and photosensitizer for deep tumor penetration.

View Article and Find Full Text PDF

Manipulating Toughness and Microstructure in Polyelectrolyte Complex Hydrogels with Competitive Surfactant Micelles.

Langmuir

December 2024

Key Laboratory of Functional Polymer Materials of Ministry of Education and College of Chemistry, Nankai University, Tianjin 300071, China.

Polyelectrolyte complex (PEC) hydrogels provide a promising strategy to develop a class of physically cross-linked networks characterized by exceptional toughness and self-healing properties. However, the precise control of the microstructure and the enhancement of mechanical properties still pose challenges in the field of PEC hydrogels. Herein, we propose a strategy to manipulate the structure of PEC with competitively charged surfactant micelles, leveraging the spatially confined surface charge and excluded volume effects to overcome coacervation issues associated with the PEC, thus achieving a simple one-step preparation of macroscopically uniform and tough PEC hydrogels.

View Article and Find Full Text PDF

GaN-based micro-light-emitting diodes (Micro-LEDs) are regarded as promising light sources for near-eye-display applications such as augmented reality/virtual reality (AR/VR) displays due to their high resolution, high brightness, and low power consumption. However, the application of Micro-LEDs in high-pixel-per-inch (PPI) displays is constrained by the drop in efficiency caused by sidewall defects in small-sized devices. In this study, a process method involving NH plasma pretreatment to reduce sidewall defects is proposed and investigated for enhancing the external quantum efficiency (EQE) of small-sized devices.

View Article and Find Full Text PDF

Cyclic poly(2-methyl-2-oxazine) (-PMOZI) brush shells on Au nanoparticles (NPs) exhibit enhanced stealth properties toward serum and different cell lines compared to their linear PMOZI (-PMOZI) counterparts. While selectively recruiting immunoglobulins, -PMOZI shells reduce overall human serum (HS) protein binding and alter the processing of complement factor 3 (C3) compared to chemically identical linear shells. Polymer cyclization significantly decreases NP uptake by nonphagocytic cells and macrophages in both complement-deficient fetal bovine serum (FBS) and complement-expressing HS, indicating ineffective functional opsonization.

View Article and Find Full Text PDF

Prevalence and characterization of Staphylococcus aureus isolated from meat and milk in Northeastern Italy.

J Food Prot

December 2024

Université Paris-Saclay, Micalis Institute, INRAE, AgroParisTech, 78352 Jouy en Josas, France. Electronic address:

Staphylococcus aureus is a pathogenic microorganism often found in animal-derived foods and is known for its ability to readily develop resistance to antibiotic treatments. This study was designed to determine prevalence of S. aureus strains in raw milk and meat in Italy and to evaluate their antibiotic resistance profiles and biofilm production.

View Article and Find Full Text PDF

Want AI Summaries of new PubMed Abstracts delivered to your In-box?

Enter search terms and have AI summaries delivered each week - change queries or unsubscribe any time!