The nematode Caenorhabditis elegans is emerging as a promising model for studying the molecular control of axon regeneration. A forward genetic screen identified the DLK-1 (dual leucine zipper-bearing kinase 1) MAP (mitogen-activated protein) kinase pathway as a positive regulator of growth cone formation during axon regeneration. Although DLK-1 pathway mutant animals display a dramatic defect in regeneration, their axons have no apparent defects in initial outgrowth. The DLK-1 pathway also plays a role in synaptogenesis, but this role appears to be separate from its function in regeneration. Understanding how the DLK-1 pathway acts in development, plasticity, and regeneration may shed light on the evolution of mechanisms regulating axon regeneration.
Download full-text PDF |
Source |
---|---|
http://dx.doi.org/10.1126/scisignal.269pe30 | DOI Listing |
Life Sci
December 2024
Department of Rehabilitation Medicine, the First Affiliated Hospital, Jiangxi Medical College, Nanchang University, Nanchang, Jiangxi 330006, China; The First Clinical Medical College School, Jiangxi Medical College, Nanchang University, Nanchang, Jiangxi 330006, China; Jiangxi Provincial Key Laboratory of Trauma, Burn and Pain Medicine, the First Affiliated Hospital, Jiangxi Medical College, Nanchang University, Nanchang, Jiangxi 330006, China. Electronic address:
Aims: This study explores the potential of neuromodulation, specifically transcranial alternating current stimulation (tACS), as a promising rehabilitative therapy in spinal cord injury (SCI).
Main Methods: By meticulously optimizing treatment parameters and durations, our objective was to enhance nerve regeneration and facilitate functional recovery. To assess the efficacy of tACS, our experiments used the rat T10 SCI model.
PLoS One
December 2024
Faculty of Medicine Universitas Indonesia, Department of Orthopaedics & Traumatology, Dr Cipto Mangunkusumo National Central Hospital, Jakarta, Indonesia.
Background And Purpose: Current treatments for peripheral nerve defects are suboptimal. Mesenchymal stem cell (MSC) implantation holds promise, with studies indicating their efficacy through the secretome. This study aims to assess the secretome's potency in regenerating peripheral nerve defects.
View Article and Find Full Text PDFMol Neurobiol
December 2024
Bascom Palmer Eye Institute, University of Miami Miller School of Medicine, 1638 NW 10Th Ave, Rm 404, Miami, FL, 33136, USA.
The optic nerve contains retinal ganglion cell (RGC) axons and functions to transmit visual stimuli to the brain. Injury to the optic nerve from ischemia, trauma, or disease leads to retrograde axonal degeneration and subsequent RGC dysfunction and death, causing irreversible vision loss. Inflammatory responses to neurological damage and axonal injuries in the central nervous system (CNS) are typically harmful to neurons and prevent recovery.
View Article and Find Full Text PDFActa Neuropathol Commun
December 2024
Department of Ophthalmology, UPMC Vision Institute, University of Pittsburgh School of Medicine, 1622 Locust Street, Pittsburgh, PA, 15219, USA.
Mammalian central nervous system (CNS) axons cannot spontaneously regenerate after injury, creating an unmet need to identify molecular regulators to promote axon regeneration and reduce the lasting impact of CNS injuries. While tubulin polymerization promoting protein family member 3 (Tppp3) is known to promote axon outgrowth in amphibians, its role in mammalian axon regeneration remains unknown. Here we investigated Tppp3 in retinal ganglion cells (RGCs) neuroprotection and axonal regeneration using an optic nerve crush (ONC) model in the rodent.
View Article and Find Full Text PDFSci Rep
December 2024
Department of Orthopaedic Surgery, Keio University School of Medicine, 35 Shinanomachi, Shinjuku-Ku, Tokyo, 160-8582, Japan.
Chronic complete spinal cord injury (SCI) is difficult to treat because of scar formation and cavitary lesions. While human iPS cell-derived neural stem/progenitor cell (hNS/PC) therapy shows promise, its efficacy is limited without the structural support needed to address cavitary lesions. Our study investigated a combined approach involving surgical scar resection, decellularized extracellular matrix (dECM) hydrogel as a scaffold, and hNS/PC transplantation.
View Article and Find Full Text PDFEnter search terms and have AI summaries delivered each week - change queries or unsubscribe any time!