We report here that des-methyl, des-amino pateamine A (DMDA-PatA), a structurally simplified analogue of the marine natural product pateamine A, has potent antiproliferative activity against a wide variety of human cancer cell lines while showing relatively low cytotoxicity against nonproliferating, quiescent human fibroblasts. DMDA-PatA retains almost full in vitro potency in P-glycoprotein-overexpressing MES-SA/Dx5-Rx1 human uterine sarcoma cells that are significantly resistant to paclitaxel, suggesting that DMDA-PatA is not a substrate for P-glycoprotein-mediated drug efflux. Treatment of proliferating cells with DMDA-PatA leads to rapid shutdown of DNA synthesis in the S phase of the cell cycle. Cell-free studies show that DMDA-PatA directly inhibits DNA polymerases α and γ in vitro albeit at concentrations considerably higher than those that inhibit cell proliferation. DMDA-PatA shows potent anticancer activity in several human cancer xenograft models in nude mice, including significant regressions observed in the LOX and MDA-MB-435 melanoma models. DMDA-PatA thus represents a promising natural product-based anticancer agent that warrants further investigation.

Download full-text PDF

Source
http://www.ncbi.nlm.nih.gov/pmc/articles/PMC3026899PMC
http://dx.doi.org/10.1158/1535-7163.MCT-08-1026DOI Listing

Publication Analysis

Top Keywords

des-methyl des-amino
8
des-amino pateamine
8
analogue marine
8
marine natural
8
natural product
8
product pateamine
8
human cancer
8
dmda-pata
7
potent vitro
4
vitro vivo
4

Similar Publications

Pateamines act as inhibitors of the RNA helicase eIF4A and exhibit antiviral and anticancer properties. Recently, we observed that inhibition of eIF4A by rocaglates affects the immune response. To investigate whether the observed immunomodulatory effects are specific to rocaglates or the inhibition of eIF4A, a comprehensive study was conducted on the influence of pateamines that exhibit the same inhibitory mode of action as rocaglates on various immune cells.

View Article and Find Full Text PDF

Investigation of the mechanism of action of a potent pateamine A analog, des-methyl, des-amino pateamine A (DMDAPatA).

Biochem Cell Biol

August 2020

Department of Pharmaceutical Sciences, College of Pharmacy and Health Sciences, St. John's University, 8000 Utopia Parkway, Queens, NY 11439, USA.

The natural product pateamineA (PatA) is a highly potent antiproliferative agent. PatA and the simplified analog desmethyl, desamino pateamineA (DMDAPatA) have exhibited cytotoxicity selective for rapidly proliferating cells, and have been shown to inhibit cap-dependent translation initiation through binding to eIF4A (eukaryotic initiation factor 4A) of the eIF4F complex. PatA and DMDAPatA are both known to stimulate the RNA-dependent ATPase, and ATP-dependent RNA helicase activities of eIF4A.

View Article and Find Full Text PDF

The viability of chronic lymphocytic leukemia (CLL) is critically dependent upon staving off death by apoptosis, a hallmark of CLL pathophysiology. The recognition that Mcl-1, a major component of the anti-apoptotic response, is intrinsically short-lived and must be continually resynthesized suggested a novel therapeutic approach. Pateamine A (PatA), a macrolide marine natural product, inhibits cap-dependent translation by binding to the initiation factor eIF4A.

View Article and Find Full Text PDF

Catalysis-Based Total Syntheses of Pateamine A and DMDA-Pat A.

J Am Chem Soc

August 2018

Max-Planck-Institut für Kohlenforschung , D-45470 Mülheim/Ruhr , Germany.

The marine natural product pateamine A (1) and its somewhat simplified designer analogue DMDA-Pat A (2) (DMDA = desmethyl-desamino) are potently cytotoxic compounds; most notably, 2 had previously been found to exhibit a promising differential in vivo activity in xenograft melanoma models, even though the ubiquitous eukaryotic initiation factor 4A (eIF4A) constitutes its primary biological target. In addition, 1 had also been identified as a possible lead in the quest for medication against cachexia, an often lethal muscle wasting syndrome affecting many immunocompromised or cancer patients. The short supply of these macrodiolides, however, rendered a more detailed biological assessment difficult.

View Article and Find Full Text PDF

Second-generation derivatives of the eukaryotic translation initiation inhibitor pateamine A targeting eIF4A as potential anticancer agents.

Bioorg Med Chem

January 2014

Natural Product LINCHPIN Laboratory, Department of Chemistry, Texas A&M University, P.O. Box 300012, College Station, TX 77842-3012, USA; Department of Chemistry, Texas A&M University, P.O. Box 300012, College Station, TX 77842-3012, USA. Electronic address:

A series of pateamine A (1) derivatives were synthesized for structure/activity relationship (SAR) studies and a selection of previous generation analogs were re-evaluated based on current information regarding the mechanism of action of these translation inhibitors. Structural modifications in the new generation of derivatives focused on alterations to the C19-C22 Z,E-diene and the trienyl side chain of the previously described simplified, des-methyl, des-amino pateamine A (DMDAPatA, 2). Derivatives were tested for anti-proliferative activity in cell culture and for inhibition of mammalian cap-dependent translation in vitro.

View Article and Find Full Text PDF

Want AI Summaries of new PubMed Abstracts delivered to your In-box?

Enter search terms and have AI summaries delivered each week - change queries or unsubscribe any time!