Cyp26 enzymes function in endoderm to regulate pancreatic field size.

Proc Natl Acad Sci U S A

Department of Organismal Biology and Anatomy and Committee on Developmental Biology, University of Chicago, 1027 East 57th Street, Chicago, IL 60637, USA.

Published: May 2009

The control of organ size and position relies, at least in part, upon appropriate regulation of the signals that specify organ progenitor fields. Pancreatic cell fates are specified by retinoic acid (RA), and proper size and localization of the pancreatic field are dependent on tight control of RA signaling. Here we show that the RA-degrading Cyp26 enzymes play a critical role in defining the normal anterior limit of the pancreatic field. Disruption of Cyp26 function causes a dramatic expansion of pancreatic cell types toward the anterior of the embryo. The cyp26a1 gene is expressed in the anterior trunk endoderm at developmental stages when RA is signaling to specify pancreas, and analysis of cyp26a1/giraffe (gir) mutant zebrafish embryos confirms that cyp26a1 plays the primary role in setting the anterior limit of the pancreas. Analysis of the gir mutants further reveals that cyp26b1 and cyp26c1 function redundantly to partially compensate for loss of Cyp26a1 function. We used cell transplantation to determine that Cyp26a1 functions directly in endoderm to modulate RA signaling and limit the pancreatic field. Taken together with our finding that endodermal expression of cyp26 genes is subject to positive regulation by RA, our data reveal a feedback loop within the endoderm. Such feedback can maintain consistent levels of RA signaling, despite environmental fluctuations in RA concentration, thus ensuring a consistent size and location of the pancreatic field.

Download full-text PDF

Source
http://www.ncbi.nlm.nih.gov/pmc/articles/PMC2683109PMC
http://dx.doi.org/10.1073/pnas.0813108106DOI Listing

Publication Analysis

Top Keywords

pancreatic field
20
cyp26 enzymes
8
pancreatic cell
8
anterior limit
8
limit pancreatic
8
pancreas analysis
8
pancreatic
7
field
5
cyp26
4
function
4

Similar Publications

Global Literature Analysis of Tumor Organoid and Tumor-on-Chip Research.

Cancers (Basel)

January 2025

Hybrid Technology Hub, Centre of Excellence, Institute of Basic Medical Sciences, University of Oslo, 0372 Oslo, Norway.

: Tumor organoid and tumor-on-chip (ToC) platforms replicate aspects of the anatomical and physiological states of tumors. They, therefore, serve as models for investigating tumor microenvironments, metastasis, and immune interactions, especially for precision drug testing. To map the changing research diversity and focus in this field, we performed a quality-controlled text analysis of categorized academic publications and clinical studies.

View Article and Find Full Text PDF

Critical care medicine focuses on understanding the pathophysiological mechanisms and treatment approaches for life-threatening conditions, including sepsis, severe trauma/burns, hemorrhagic shock, heatstroke, and acute pancreatitis, all of which have high incidence rates. These conditions are primarily characterized by acute multi-organ dysfunction, with sudden onset, severe illness, and high mortality rates. Additionally, critical care treatment demands substantial medical resources, imposing significant economic burdens on patients' families and society.

View Article and Find Full Text PDF

The Effects of Moderate to High Static Magnetic Fields on Pancreatic Damage.

J Magn Reson Imaging

January 2025

High Magnetic Field Laboratory, CAS Key Laboratory of High Magnetic Field and Ion Beam Physical Biology, Hefei Institutes of Physical Science, Chinese Academy of Sciences, Hefei, China.

Background: Pancreatic damage is a common digestive system disease with no specific drugs. Static magnetic field (SMF), the key component of magnetic resonance imaging (MRI), has demonstrated prominent effects in various disease models.

Purpose: To study the effects of 0.

View Article and Find Full Text PDF

Multiparametric MRI for Assessment of the Biological Invasiveness and Prognosis of Pancreatic Ductal Adenocarcinoma in the Era of Artificial Intelligence.

J Magn Reson Imaging

January 2025

Nurturing Center of Jiangsu Province for State Laboratory of AI Imaging & Interventional Radiology, Department of Radiology, Zhongda Hospital, Medical School of Southeast University, Nanjing, China.

Pancreatic ductal adenocarcinoma (PDAC) is the deadliest malignant tumor, with a grim 5-year overall survival rate of about 12%. As its incidence and mortality rates rise, it is likely to become the second-leading cause of cancer-related death. The radiological assessment determined the stage and management of PDAC.

View Article and Find Full Text PDF

Background: Treatment of intrahepatic cholangiocarcinoma (ICC) remains challenging owing to the lack of clear guidelines on surgical resection. The 2021 ICC guidelines have not fully resolved the ongoing debate between surgical and nonsurgical treatment options. This study aimed to identify trends and issues in ICC treatment strategies in the clinical field by surveying the attitudes of hepatobiliary and pancreatic (HBP) surgeons.

View Article and Find Full Text PDF

Want AI Summaries of new PubMed Abstracts delivered to your In-box?

Enter search terms and have AI summaries delivered each week - change queries or unsubscribe any time!