Despite the recent identification of the transcriptional regulatory circuitry involving SOX2, NANOG, and OCT-4, the intracellular signaling networks that control pluripotency of human embryonic stem cells (hESCs) remain largely undefined. Here, we demonstrate an essential role for the serine/threonine protein kinase mammalian target of rapamycin (mTOR) in regulating hESC long-term undifferentiated growth. Inhibition of mTOR impairs pluripotency, prevents cell proliferation, and enhances mesoderm and endoderm activities in hESCs. At the molecular level, mTOR integrates signals from extrinsic pluripotency-supporting factors and represses the transcriptional activities of a subset of developmental and growth-inhibitory genes, as revealed by genome-wide microarray analyses. Repression of the developmental genes by mTOR is necessary for the maintenance of hESC pluripotency. These results uncover a novel signaling mechanism by which mTOR controls fate decisions in hESCs. Our findings may contribute to effective strategies for tissue repair and regeneration.

Download full-text PDF

Source
http://www.ncbi.nlm.nih.gov/pmc/articles/PMC2683106PMC
http://dx.doi.org/10.1073/pnas.0901854106DOI Listing

Publication Analysis

Top Keywords

mesoderm endoderm
8
endoderm activities
8
human embryonic
8
embryonic stem
8
stem cells
8
mtor
6
mtor supports
4
supports long-term
4
long-term self-renewal
4
self-renewal suppresses
4

Similar Publications

Want AI Summaries of new PubMed Abstracts delivered to your In-box?

Enter search terms and have AI summaries delivered each week - change queries or unsubscribe any time!