Class B1 (secretin family) G protein-coupled receptors (GPCRs) modulate a wide range of physiological functions, including glucose homeostasis, feeding behavior, fat deposition, bone remodeling, and vascular contractility. Endogenous peptide ligands for these GPCRs are of intermediate length (27-44 aa) and include receptor affinity (C-terminal) as well as receptor activation (N-terminal) domains. We have developed a technology in which a peptide ligand tethered to the cell membrane selectively modulates corresponding class B1 GPCR-mediated signaling. The engineered cDNA constructs encode a single protein composed of (i) a transmembrane domain (TMD) with an intracellular C terminus, (ii) a poly(asparagine-glycine) linker extending from the TMD into the extracellular space, and (iii) a class B1 receptor ligand positioned at the N terminus. We demonstrate that membrane-tethered peptides, like corresponding soluble ligands, trigger dose-dependent receptor activation. The broad applicability of this approach is illustrated by experiments using tethered versions of 7 mammalian endogenous class B1 GPCR agonists. In parallel, we carried out mutational studies focused primarily on incretin ligands of the glucagon-like peptide-1 receptor. These experiments suggest that tethered ligand activity is conferred in large part by the N-terminal domain of the peptide hormone. Follow-up studies revealed that interconversion of tethered agonists and antagonists can be achieved with the introduction of selected point mutations. Such complementary receptor modulators provide important new tools for probing receptor structure-function relationships as well as for future studies aimed at dissecting the tissue-specific biological role of a GPCR in vivo (e.g., in the brain vs. in the periphery).
Download full-text PDF |
Source |
---|---|
http://www.ncbi.nlm.nih.gov/pmc/articles/PMC2683074 | PMC |
http://dx.doi.org/10.1073/pnas.0900149106 | DOI Listing |
J Neuropsychol
January 2025
Department of Health, Medical and Neuropsychology, Leiden University, Leiden, The Netherlands.
Up to 45% of patients with Parkinson's disease (PD) experience impulse control disorders (ICDs), characterized by a loss of voluntary control over impulses, drives or temptations. This study aimed to investigate whether previously identified genetic and psychiatric risk factors interact towards the development of ICDs in PD. A total of 278 de novo PD patients (ICD-free at enrollment) were selected from the Parkinson's Progression Markers Initiative database.
View Article and Find Full Text PDFMil Med Res
January 2025
Department of Endocrinology, the Second Affiliated Hospital of Naval Medical University, Shanghai, 20003, China.
Mol Cancer
January 2025
Department of Radiation Oncology, Peking University Third Hospital, Beijing, 100191, China.
Background: Sorafenib, an FDA-approved drug for advanced hepatocellular carcinoma (HCC), faces resistance issues, partly due to myeloid-derived suppressor cells (MDSCs) that enhance immunosuppression in the tumor microenvironment (TME).
Methods: Various murine HCC cell lines and MDSCs were used in a series of in vitro and in vivo experiments. These included subcutaneous tumor models, cell viability assays, flow cytometry, immunohistochemistry, and RNA sequencing.
Cancer Cell Int
January 2025
Department of Toxicology, Faculty of Medical Science, Tarbiat Modares University, Tehran, Iran.
Background: Cancer remains a leading cause of death worldwide. Environmental factors, specifically endocrine-disrupting chemicals (EDCs), like phthalates, are increasingly being linked to cancer development. Phthalates, widely used in consumer products, can activate the aryl hydrocarbon receptor (AhR).
View Article and Find Full Text PDFCell Commun Signal
January 2025
Dipartimento di Scienze della Vita e Sanità Pubblica, Università Cattolica del Sacro Cuore, Rome, Italy.
Background: Neuropilin-1 (NRP1) is a transmembrane protein involved in surface receptor complexes for a variety of extracellular signals. NRP1 expression in human cancers is associated with prominent angiogenesis and advanced progression stage. However, the molecular mechanisms underlying NRP1 activity in the tumor microenvironment remain unclear.
View Article and Find Full Text PDFEnter search terms and have AI summaries delivered each week - change queries or unsubscribe any time!