HIV-1 integration into the host cell genome is a multistep process catalyzed by the virally-encoded integrase (IN) protein. In view of the difficulty of obtaining a stable DNA-bound IN at high concentration as required for structure determination, we selected IN-DNA complexes that form disulfide linkages between 5'-thiolated DNA and several single mutations to cysteine around the catalytic site of IN. Mild reducing conditions allowed for selection of the most thermodynamically-stable disulfide-linked species. The most stable complexes induce tetramer formation of IN, as happens during the physiological integration reaction, and are able to catalyze the strand transfer step of retroviral integration. One of these complexes also binds strand-transfer inhibitors of HIV antiviral drugs, making it uniquely valuable among the mutants of this set for understanding portions of the integration reaction. This novel complex may help define substrate interactions and delineate the mechanism of action of known integration inhibitors.

Download full-text PDF

Source
http://www.ncbi.nlm.nih.gov/pmc/articles/PMC2688900PMC
http://dx.doi.org/10.1073/pnas.0811919106DOI Listing

Publication Analysis

Top Keywords

integration reaction
8
integration
5
catalytically-active complex
4
complex hiv-1
4
hiv-1 integrase
4
integrase viral
4
viral dna
4
dna substrate
4
substrate binds
4
binds anti-integrase
4

Similar Publications

Neuropathic pain (NP) imposes a significant burden on individuals, manifesting as nociceptive anaphylaxis, hypersensitivity, and spontaneous pain. Previous studies have shown that traumatic stress in the nervous system can lead to excessive production of hydrogen sulfide (HS) in the gut. As a toxic gas, it can damage the nervous system through the gut-brain axis.

View Article and Find Full Text PDF

Unique hierarchical NiFe-LDH/Ni/NiCoS heterostructure arrays on nickel foam for the improvement of overall water splitting activity.

Nanoscale

January 2025

Chongqing Key Laboratory of Inorganic Functional Materials, College of Chemistry, Chongqing Normal University, Chongqing, 401331, PR China.

The development of environmentally friendly, high-efficiency, stable, earth-abundant and non-precious metal-based electrocatalysts with fast kinetics and low overpotential for oxygen evolution reaction (OER) and hydrogen evolution reaction (HER) is of exceeding significance but still challenging. Herein, a bifunctional electrode of unique hierarchical NiFe-LDH/Ni/NiCoS/NF (NiFe-LDH = nickel-iron layered double hydroxide and NF = nickel foam) electrocatalytic architecture, which is built up from NiFe-LDH nanosheets, Ni nanoparticles and NiCoS nanoneedles sequentially arrayed on a porous NF substrate, has been prepared by a facile hydrothermal and electrodeposition method. This electrocatalytic architecture is binder-free and its outer NiFe-LDH nanosheets can effectively prevent the oxidation of inner Ni nanoparticles and corrosion of NiCoS nanoneedles during water electrolysis.

View Article and Find Full Text PDF

Cryo-EM structure of AAV2 Rep68 bound to integration site AAVS1: insights into the mechanism of DNA melting.

Nucleic Acids Res

January 2025

Department of Physiology and Biophysics, Virginia Commonwealth University, School of Medicine, Richmond, VA 23298, United States.

The Rep68 protein from Adeno-Associated Virus (AAV) is a multifunctional SF3 helicase that performs most of the DNA transactions necessary for the viral life cycle. During AAV DNA replication, Rep68 assembles at the origin of replication, catalyzing the DNA melting and nicking reactions during the hairpin rolling replication process to complete the second-strand synthesis of the AAV genome. We report the cryo-electron microscopy structures of Rep68 bound to the adeno-associated virus integration site 1 in different nucleotide-bound states.

View Article and Find Full Text PDF

Exercising Self-Control Increases Responsivity to Hedonic and Eudaimonic Rewards.

Soc Cogn Affect Neurosci

January 2025

Centre for Research on Self and Identity, School of Psychology, University of Southampton, United Kingdom.

The reward responsivity hypothesis of self-control proposes that, irrespective of self-control success, exercising self-control is aversive and engenders negative affect. To countermand this discomfort, reward-seeking behavior may be amplified after bouts of self-control, bringing individuals back to a mildly positive baseline state. Previous studies indicated that effort-an integral component of self-control-can increase reward responsivity.

View Article and Find Full Text PDF

fungal species are considered major plant pathogens, infecting various crops and resulting in significant agricultural losses. Additionally, these species can contaminate grain with multiple mycotoxins that are harmful to humans and animals. Efficient pest management relies on timely detection and identification of phytopathogens in plant and grain samples, facilitating prompt selection of a crop protection strategy.

View Article and Find Full Text PDF

Want AI Summaries of new PubMed Abstracts delivered to your In-box?

Enter search terms and have AI summaries delivered each week - change queries or unsubscribe any time!