The fungal lipid-translocating exporter family consists of conserved membrane proteins, with six or seven transmembrane spans. Phylogenetic trees and conserved gene order relationships show that the common ancestor of five closely related hemiascomycetous yeast species contained the RSB1 and PUG1 paralogous genes. In Saccharomyces cerevisiae, Rsb1 functions as a transporter or translocase of sphingoid bases, whereas Pug1 facilitates the inducible transport of protoporphyrin IX and hemin. The budding yeast contains two other paralogs, Ylr046p, of unknown function, and Rta1p, overexpression of which confers resistance to an ergosterol biosynthesis inhibitor. Large-scale mRNA expression profiling has shown that transcription of PUG1, RTA1 and YLR046 is induced under hypoxic conditions. Ergosterol biosynthesis is impaired under low-oxygen conditions as a consequence of the decreased synthesis of heme and heme-containing proteins. These genes may encode transporters or sensors that facilitate the excretion of excessive or aberrant biosynthetic intermediates, either directly or indirectly. The expression of RSB1 and RTA1 is under the control of pleiotropic drug resistance transcription factors, suggesting that the encoded proteins may have additional roles in cell resistance to xenobiotics. This review summarizes current knowledge concerning the lipid-translocating exporter family and its potential functions, focusing on multidrug resistance and membrane phospholipid homeostasis.
Download full-text PDF |
Source |
---|---|
http://dx.doi.org/10.1111/j.1567-1364.2009.00513.x | DOI Listing |
Biochem Biophys Rep
September 2024
Faculty of Applied Biological Sciences, Gifu University, 1-1 Yanagido, Gifu, 501-1193, Japan.
Myriocin is an inhibitor of serine palmitoyltransferase involved in the initial biosynthetic step for sphingolipids, and causes potent growth inhibition in eukaryotic cells. In budding yeast, Rsb1, Rta1, Pug1, and Ylr046c are known as the Lipid-Translocating Exporter (LTE) family and believed to contribute to export of various cytotoxic lipophilic compounds. It was reported that Rsb1 is a transporter responsible for export of intracellularly accumulated long-chain bases, which alleviate the cytotoxicity.
View Article and Find Full Text PDFPathogens
October 2022
Biomedical Sciences Division, Marian University College of Osteopathic Medicine, Indianapolis, IN 46234, USA.
() is a pathogenic yeast that is the leading cause of fungal meningitis in immunocompromised patients. Various virulence factors, such as the enzyme laccase and its product melanin, phospholipase, and capsular polysaccharide have been identified. During a screen of knockout mutants, the gene resistance to aminocholesterol 1 () was identified, the function of which is currently unknown in .
View Article and Find Full Text PDFCell Microbiol
December 2017
Yeast Molecular Genetics Laboratory, School of Life Sciences, Jawaharlal Nehru University, New Delhi, India.
Antimicrob Agents Chemother
October 2016
Department of Clinical Pharmacy, College of Pharmacy, University of Tennessee Health Science Center, Memphis, Tennessee, USA
The RTA3 gene, coding for a member of the Rta1p-like lipid-translocating exporter family, is coordinately upregulated with the ATP-binding cassette transporter genes CDR1 and CDR2 in azole-resistant clinical isolates of Candida albicans that carry activating mutations in the transcription factor Tac1p. We show here that deleting RTA3 in an azole-resistant clinical isolate carrying a Tac1p-activating mutation lowered fluconazole resistance by 2-fold, while overexpressing RTA3 in an azole-susceptible clinical isolate resulted in enhanced fluconazole tolerance associated with trailing growth in a liquid microtiter plate assay. We also demonstrate that an Rta3p-green fluorescent protein (GFP) fusion protein localizes predominantly to the plasma membrane, consistent with a putative function for Rta3p as a lipid translocase.
View Article and Find Full Text PDFFEMS Yeast Res
August 2009
Unité de biochimie physiologique, Institut des sciences de la vie, Université catholique de Louvain, Croix du Sud 5-15, Louvain-la-Neuve, Belgium.
The fungal lipid-translocating exporter family consists of conserved membrane proteins, with six or seven transmembrane spans. Phylogenetic trees and conserved gene order relationships show that the common ancestor of five closely related hemiascomycetous yeast species contained the RSB1 and PUG1 paralogous genes. In Saccharomyces cerevisiae, Rsb1 functions as a transporter or translocase of sphingoid bases, whereas Pug1 facilitates the inducible transport of protoporphyrin IX and hemin.
View Article and Find Full Text PDFEnter search terms and have AI summaries delivered each week - change queries or unsubscribe any time!