Biopolymer-based growth factor delivery for tissue repair: from natural concepts to engineered systems.

Tissue Eng Part B Rev

ETH Zurich, Department of Chemistry and Applied Biosciences, Institute of Pharmaceutical Sciences, Zurich, Switzerland.

Published: September 2009

The extracellular matrix of tissues is regarded as a physiological depot for various growth factors (GFs), from where they are to be released into the surrounding tissue and play their natural roles in tissue regulation. In addition to autocrine and paracrine cell signaling, they provide specific extracellular information necessary to conduct tissue homeostasis and (re)generation. This review will detail on various physiological concepts that have evolved during evolution to control the activity of GFs in a specific manner through interaction with biopolymers of the extracellular matrix, and how such interactions may respond to systemic or cellular signals. A fundamental understanding of the extracellular storage and control of GFs could provide important cues about the nature of GF interactions and improve the potency of current implantable biopolymer systems for GF delivery in tissue repair. Therefore, in a second part of this review, current nature-derived biopolymers will be discussed with respect to their availability, suitability for scaffolding, mechanical properties, and efficiency to sustain the activity and release of GFs. Further, we will detail on rational modifications and engineering approaches to improve their applicability as delivery systems. In particular, we discuss biotechnology and chemical engineering strategies to adapt natural concepts of GF depots for delivery purposes. In conclusion, the engineering of novel biopolymer platforms holds promise to enhance the biological performance of GF-loaded artificial tissue substitutes to replace autologous and allogenous tissue grafts for the treatment of critical tissue defects.

Download full-text PDF

Source
http://dx.doi.org/10.1089/ten.TEB.2008.0668DOI Listing

Publication Analysis

Top Keywords

tissue
8
delivery tissue
8
tissue repair
8
natural concepts
8
extracellular matrix
8
will detail
8
biopolymer-based growth
4
growth factor
4
delivery
4
factor delivery
4

Similar Publications

Cell-cell crosstalk in the pathogenesis of acute lung injury and acute respiratory distress syndrome.

Tissue Barriers

January 2025

Sepsis Translational Medicine Key Laboratory of Hunan Province, Department of Pathophysiology, School of Basic Medicine Science, Central South University, Changsha, Hunan, PR China.

Acute lung injury (ALI) and acute respiratory distress syndrome (ARDS) are the result of an exaggerated inflammatory response triggered by a variety of pulmonary and systemic insults. The lung tissues are comprised of a variety of cell types, including alveolar epithelial cells, pulmonary vascular endothelial cells, macrophages, neutrophils, and others. There is mounting evidence that these diverse cell populations within the lung interact to regulate lung inflammation in response to both direct and indirect stimuli.

View Article and Find Full Text PDF

Background: Predicting response to targeted cancer therapies increasingly relies on both simple and complex genetic biomarkers. Comprehensive genomic profiling using high-throughput assays must be evaluated for reproducibility and accuracy compared with existing methods.

Methods: This study is a multicenter evaluation of the Oncomine™ Comprehensive Assay Plus (OCA Plus) Pan-Cancer Research Panel for comprehensive genomic profiling of solid tumors.

View Article and Find Full Text PDF

Trehalose has neuroprotective effects in neurodegenerative diseases. This study aimed to explore the impact of trehalose on traumatic brain injury (TBI) by investigating its role in neuroprotection. The TBI mice model was established utilizing the cortical impact technique followed by trehalose treatment.

View Article and Find Full Text PDF

From Genetic Findings to new Intestinal Molecular Targets in Lipid Metabolism.

Curr Atheroscler Rep

January 2025

Nantes Université, CHU Nantes, CNRS, Inserm, l'institut du thorax, F-44000, Nantes, France.

Purpose Of Review: While lipid-lowering therapies demonstrate efficacy, many patients still contend with significant residual risk of atherosclerotic cardiovascular diseases (ASCVD). The intestine plays a pivotal role in regulating circulating lipoproteins levels, thereby exerting influence on ASCVD pathogenesis. This review underscores recent genetic findings from the last six years that delineate new biological pathways and actors in the intestine which regulate lipid-related ASCVD risk.

View Article and Find Full Text PDF

Recent studies have suggested that the interaction between diet and an individual's genetic predisposition can determine the likelihood of obesity and various metabolic disorders. The current study aimed to examine the association of dietary branched-chain amino acids(BCAAs) and aromatic amino acids(AAAs) with the expression of the leptin and FTO genes in the visceral and subcutaneous adipose tissues of individuals undergoing surgery. This cross-sectional study was conducted on 136 Iranian adults, both men and women, aged ≥18 years.

View Article and Find Full Text PDF

Want AI Summaries of new PubMed Abstracts delivered to your In-box?

Enter search terms and have AI summaries delivered each week - change queries or unsubscribe any time!