Despite the male preponderance for developing glial tumors and a body of published literature that suggests a female gender advantage for long term survival in both human and animal studies, there have been relatively few rigorous investigations into the hormonal effects on glial tumor growth. In a previous study, we concluded that estrogen played a major role in the female survival bias seen in an intracerebral nude rat model of glioblastoma multiforme. Here we explore the potential therapeutic effect of exogenous estradiol delivery in nude rats with orthotopic glioblastoma tumors and examine the mechanism of action of estradiol on reducing tumor growth in this animal model. We administered estradiol, in several dosing regimens, to male, female and ovariectomized nude rats in a survival study. Brain sections, taken at various time points in tumor progression, were analyzed for estrogen receptor protein, proliferative index and apoptotic index. Estradiol increased survival of male, female and ovariectomized nude rats with intracerebral U87MG tumors, in a gender specific manner. The estradiol mediated effect occurred early in tumor progression, and appeared to be caused in-part by an increase in apoptotic activity. It remains unclear if estradiol's effect is direct or indirect and if it is estrogen receptor mediated. Estradiol-based or adjunctive therapy may be beneficial in treating GBM and further study is clearly warranted.
Download full-text PDF |
Source |
---|---|
http://dx.doi.org/10.1007/s11060-009-9904-6 | DOI Listing |
Nat Commun
January 2025
Department of Biomedical Engineering, Northwestern University, Evanston, IL, USA.
Tissue engineering heavily relies on cell-seeded scaffolds to support the complex biological and mechanical requirements of a target organ. However, in addition to safety and efficacy, translation of tissue engineering technology will depend on manufacturability, affordability, and ease of adoption. Therefore, there is a need to develop scalable biomaterial scaffolds with sufficient bioactivity to eliminate the need for exogenous cell seeding.
View Article and Find Full Text PDFSci Rep
December 2024
Department of Neurosurgery, Odense University Hospital, J. B. Winsløvs Vej 4, Odense C, 5000, Denmark.
Meningiomas are the most common primary central nervous system tumor. Clinical trials have failed to support effective medical treatments, despite initially promising animal studies. A key issue could be that available experimental models fail to mimic the clinical situation.
View Article and Find Full Text PDFStem Cell Res Ther
December 2024
Department of Orthodontics, Peking University School and Hospital of Stomatology, Beijing, 100081, China.
Background: Periodontal ligament stem cell (PDLSC)-based therapy is one of the methods to assist bone regeneration. Understanding the functional regulation of PDLSCs and the mechanisms involved is a crucial issue in bone regeneration. This study aimed to explore the roles of the family with sequence similarity 96 member B (FAM96B) in the functional regulation of PDLSCs.
View Article and Find Full Text PDFCureus
November 2024
Radiology, Wayne State University, Detroit, USA.
Introduction: Brain metastases are difficult to treat due to the blood-brain barrier limiting the delivery of therapeutic agents to the brain effectively. Intraventricular drug delivery has not been well studied for intra-axial pathologies. However, our prior work demonstrated that intraventricular drug delivery in a hyperosmolar vehicle showed preferential accumulation of drug within breast cancer tissue compared to surrounding brain parenchyma.
View Article and Find Full Text PDFCell Stem Cell
January 2025
Yale Cardiovascular Research Center, Section of Cardiovascular Medicine, Department of Internal Medicine Yale School of Medicine, New Haven, CT 06511, USA; Yale Stem Cell Center, New Haven, CT 06520, USA; Department of Pathology, Yale School of Medicine, New Haven, CT 06520, USA; Vascular Biology and Therapeutics Program, Yale University School of Medicine, New Haven, CT 06520, USA; Department of Biomedical Engineering, Yale University, New Haven, CT 06519, USA. Electronic address:
Tissue-engineered vascular conduits (TEVCs), often made by seeding autologous bone marrow cells onto biodegradable polymeric scaffolds, hold promise toward treating single-ventricle congenital heart defects (SVCHDs). However, the clinical adoption of TEVCs has been hindered by a high incidence of graft stenosis in prior TEVC clinical trials. Herein, we developed endothelialized TEVCs by coating the luminal surface of decellularized human umbilical arteries with human induced pluripotent stem cell (hiPSC)-derived endothelial cells (ECs), followed by shear stress training, in flow bioreactors.
View Article and Find Full Text PDFEnter search terms and have AI summaries delivered each week - change queries or unsubscribe any time!