Introduction: With the advent of improved diagnostic and imaging techniques, it is now possible to detect renal cancers in their very early stages, when they are still present as small renal masses. In these situations, use of laparoscopic partial nephrectomy (LPN) techniques are indicated and have gained acceptance in major medical institutions worldwide, offering comparable oncological outcomes and improving quality of life in the patient when contrasted with open nephrectomy procedures. However, a complication that may occur during or after this surgery is the possibility of compromising renal function, as a result of extended ischemia times of more than 30 min. We have undertaken a systematic study of the potential of several agents that may enhance renal parenchymal preservation without causing unwanted renal dysfunction as a result of enhanced ischemia times. In this study, we have evaluated the potential of one such agent under study, namely hydralazine, which was shown earlier to enhance hypoxia inducible factor-1α (HIF-1α) levels in experimental animal systems. Our aim was to determine whether enhanced levels of HIF-1α via pre-treatment with hydralazine had a reno-protective effect after ischemic injury.

Materials And Methods: Rats were injected with hydralazine or saline for 5 days prior to right nephrectomy and 40 min of cross-clamping of the left renal pedicle. Ischemic damage was monitored via serum chemistry and renal pathology.

Results: In our system, we found that hydralazine pre-treatment, even though it enhanced HIF-1α levels in the kidney, it also increased serum creatinine and worsened the morphological damage to the renal tubules in the ischemic kidney.

Conclusions: We conclude that even though this agent was described as a powerful inhibitor of prolyl hydroxylases, enhancing the levels of HIF-1α, it should be approached with caution when it is considered to enhance warm ischemia time and minimize the renal damage subsequent to LPN.

Download full-text PDF

Source
http://dx.doi.org/10.1007/s00345-009-0415-zDOI Listing

Publication Analysis

Top Keywords

renal
10
ischemia times
8
hif-1α levels
8
levels hif-1α
8
hydralazine
5
hypoxic pre-conditioning
4
pre-conditioning rat
4
rat renal
4
ischemia
4
renal ischemia
4

Similar Publications

Introduction: Arteriovenous (AV) fistula creation is the most common surgical procedure for providing vascular access for haemodialysis in patients with chronic kidney disease (CKD). The functioning of fistula dictates the quality of dialysis and the longevity of patients. The most common circumstances that require surgical takedown of AV fistula are thrombosis and rupture.

View Article and Find Full Text PDF

Introduction: Acute kidney injury involves inflammation and intrinsic renal damage, and is a common complication of severe coronavirus disease 2019 (COVID-19). Baseline chronic kidney disease (CKD) confers an increased mortality risk. We determined the renal long-term outcomes of COVID-19 in patients with baseline CKD, and the risk factors prompting renal replacement therapy (RRT) initiation and mortality.

View Article and Find Full Text PDF

Background: SHEN26 (ATV014) is an oral RNA-dependent RNA polymerase (RdRp) inhibitor with potential anti-SARS-CoV-2 activity. Safety, tolerability, and pharmacokinetic characteristics were verified in a Phase I study. This phase II study aimed to verify the efficacy and safety of SHEN26 in COVID-19 patients.

View Article and Find Full Text PDF

Background: Clear cell renal cell carcinoma (ccRCC) has a high incidence rate and poor prognosis, and currently lacks effective therapies. Recently, peptide-based drugs have shown promise in cancer treatment. In this research, a new endogenous peptide called CBDP1 was discovered in ccRCC and its potential anti-cancer properties were examined.

View Article and Find Full Text PDF

Pseudogenization of the Slc23a4 gene is necessary for the survival of Xdh-deficient mice.

Sci Rep

January 2025

Laboratory of Human Physiology and Pathology, Faculty of Pharmaceutical Sciences, Teikyo University, Tokyo, Japan.

In most patients with type 1 xanthinuria caused by mutations in the xanthine dehydrogenase gene (XDH), no clinical complications, except for urinary stones, are observed. In contrast, all Xdh(- / -) mice die due to renal failure before reaching adulthood at 8 weeks of age. Hypoxanthine or xanthine levels become excessive and thus toxic in Xdh(- / -) mice because enhancing the activity of hypoxanthine phosphoribosyl transferase (HPRT), which is an enzyme that uses hypoxanthine as a substrate, slightly increases the life span of these mice.

View Article and Find Full Text PDF

Want AI Summaries of new PubMed Abstracts delivered to your In-box?

Enter search terms and have AI summaries delivered each week - change queries or unsubscribe any time!