Chronic exposure of rats to occupational textile noise causes cytological changes in adrenal cortex.

Noise Health

Department of Anatomy and UMIB (Unit for Multidisciplinary Biomedical Research) of ICBAS, Portugal.

Published: July 2009

Chronic exposure to industrial noise and its effects on biological systems. Occupational exposure to noise may result in health disorders. Our aim was to evaluate the effects of chronic exposure to high-intensity noise of textile industry cotton rooms on the adrenal morphology. The environmental noise of a cotton-mill room from a large textile factory of Northern Portugal was recorded and reproduced by an adopted electroacoustic setup in a sound-insulated animal room where the rats were housed. The sounds were reproduced at the original levels of approximately 92 dB, which was achieved by equalization and distribution of sound output in the room. Wistar rats were submitted to noise exposure, in the same time schedule as employed in textile plants. After one, three, five, and seven months, the adrenals were collected and analyzed by light microscopy. Analyzed by multivariate analysis of variance and post hoc Bonferroni correction for multiple comparisons of the means between the groups. Noise exposure induced time-dependent changes in adrenal cortex, with decrease of zona fasciculata (ZF) and increase of zona reticularis volumes, together with a significant depletion of lipid droplet density in ZF cells of exposed rats, in comparison to control rats. Chronic exposure of rats to textile industry noise triggers cytological changes in the adrenals that suggest the existence of a sustained stress response.

Download full-text PDF

Source
http://dx.doi.org/10.4103/1463-1741.50697DOI Listing

Publication Analysis

Top Keywords

chronic exposure
16
exposure rats
8
noise
8
cytological changes
8
changes adrenal
8
adrenal cortex
8
textile industry
8
noise exposure
8
rats
6
exposure
6

Similar Publications

Unlabelled: Children with chronic respiratory diseases (CRD) are at high risk of vitamin D deficiency, which can be aggravated in those hospitalized for prolonged periods, a group with unknown prevalence.

Objective: to determine the vitamin D status and the risk factors in children with CRD hospitalized for prolonged periods.

Patients And Method: Cross-sectional study carried out at the Hospital Josefina Martinez from September to December 2012, in children with CRD.

View Article and Find Full Text PDF

Inadvertent exposure to aristolochic acids (AAs) is causing chronic renal disease worldwide, with aristolochic acid I (AA-I) identified as the primary toxic agent. This study employed chemical methods to investigate the mechanisms underlying the nephrotoxicity and carcinogenicity of AA-I. Aristolochic acid II (AA-II), which has a structure similar to that of AA-I, was investigated with the same methods for comparison.

View Article and Find Full Text PDF

Mycotoxin exposure from contaminated food is a significant global health issue, particularly among vulnerable children. Given limited data on mycotoxin exposure among Namibian children, this study investigated mycotoxin types and levels in foods, evaluated dietary mycotoxin exposure from processed cereal foods in children under age five from rural households in Oshana region, Namibia. Mycotoxins in cereal-based food samples (n = 162) (mahangu flour (n = 35), sorghum flour (n = 13), mahangu thin/thick porridge (n = 54), oshikundu (n = 56), and omungome (n = 4)) were determined by liquid chromatography-tandem mass spectrometry.

View Article and Find Full Text PDF

Background: Platelets are correlated with myeloid leukemia (ML), but to date, there have been no studies confirming the causal relationship between them.

Methods: Platelet count (PLT), mean platelet volume (MPV), plateletcrit (PCT), and platelet distribution width (PDW) data were obtained from the GWAS catalog database as exposure factors. Acute myeloid leukemia (AML) and chronic myeloid leukemia (CML) data were obtained from the FinnGen database as outcome indicators.

View Article and Find Full Text PDF

Human Hair Follicle Mesenchymal Stem Cell-Derived Exosomes Attenuate UVB-Induced Photoaging via the miR-125b-5p/TGF-β1/Smad Axis.

Biomater Res

January 2025

Center for Plastic & Reconstructive Surgery, Department of Dermatology, Zhejiang Provincial People's Hospital, Affiliated People's Hospital, Hangzhou Medical College, Hangzhou 310014, Zhejiang, China.

Cutaneous photoaging, induced by chronic exposure to ultraviolet (UV) radiation, typically manifests as alterations in both the physical appearance and functional properties of the skin and may predispose individuals to cancer development. Recent studies have demonstrated the reparative potential of exosomes derived from mesenchymal stem cells in addressing skin damage, while specific reports highlight their efficacy in ameliorating skin photoaging. However, the precise role of exosomes derived from human hair follicle mesenchymal stem cells (HFMSC-Exos) in the context of cutaneous photoaging remains largely unexplored.

View Article and Find Full Text PDF

Want AI Summaries of new PubMed Abstracts delivered to your In-box?

Enter search terms and have AI summaries delivered each week - change queries or unsubscribe any time!