In the course of infection, the detection of pathogen-associated molecular patterns by specialized pattern recognition receptors in the host leads to activation of the innate immune system. Whereas the subsequent induction of adaptive immune responses in secondary lymphoid organs is well described, little is known about the effects of pathogen-associated molecular pattern-induced activation on primary lymphoid organs. Here we show that activation of innate immunity through the virus-sensing melanoma differentiation-associated gene 5 (MDA-5) receptor causes a rapid involution of the thymus. We observed a strong decrease in thymic cellularity associated with characteristic alterations in thymic subpopulations and microanatomy. In contrast, immune stimulation with potent TLR agonists did not lead to thymic involution or induce changes in thymic subpopulations, demonstrating that thymic pathology is not a general consequence of innate immune activation. We determined that suppression of thymocyte proliferation and enhanced apoptosis are the essential cellular mechanisms involved in the decrease in thymic size upon MDA-5 activation. Further, thymic involution critically depended on type I IFN. Strikingly however, no direct action of type I IFN on thymocytes was required, given that the decrease in thymic size was still observed in mice with a selective deletion of the type I IFN receptor on T cells. All changes observed were self-limiting, given that cessation of MDA-5 activation led to a rapid recovery of thymic size. We show for the first time that the in vivo activation of the virus-sensing MDA-5 receptor leads to a rapid and reversible involution of the thymus.
Download full-text PDF |
Source |
---|---|
http://dx.doi.org/10.4049/jimmunol.0803809 | DOI Listing |
Dev Comp Immunol
December 2024
Institute of Veterinary Pathology, Vetsuisse Faculty, University of Zurich, Switzerland.
Knowledge on the structure and composition of the haematopoietic tissue (HT) is essential to understand the basic immune functions of the immune system in any species. For reptiles, it is extremely limited, hence we undertook an in-depth in situ investigation of the HT (bone marrow, thymus, spleen, lymphatic tissue of the alimentary tract) in the common boa (Boa constrictor). We also assessed age- and disease-related changes, with a special focus on Boid Inclusion Body Disease , a highly relevant reptarenavirus-associated disease in boid snakes.
View Article and Find Full Text PDFFront Immunol
December 2024
Department of Neurosciences, Psychology, Drug Research and Child Health (NEUROFARBA), University of Florence, Florence, Italy.
Introduction: Reactivation of thymopoiesis in adult patients with autoimmune disorders treated with autologous haematopoietic stem cell transplantation (AHSCT) is supported by studies exploring immunoreconstitution. Radiological evidence of thymic hyperplasia after AHSCT was previously reported in patients with systemic sclerosis, but, to our knowledge, it has not been described in multiple sclerosis (MS), where premature thymic involution has been observed and immunosenescence might be accelerated by disease-modifying treatments (DMTs).
Participants And Methods: monocentric case series including MS patients who performed a chest CT scan for clinical purposes after having received AHSCT (BEAM/ATG regimen) for aggressive MS failing DMTs.
J Vet Med Sci
December 2024
Laboratory of Veterinary Anatomy, Faculty of Agriculture, University of Miyazaki.
Immunohistochemistry for keratins 5, 8, 14, and 18 was performed on Japanese Black calf thymuses at various stages of acute thymic involution. Keratins 5 and 14 were predominantly localized in the thymic medulla, while keratins 8 and 18 were broadly distributed throughout the parenchyma. Despite thymic involution, the distribution patterns of these keratins remained consistent.
View Article and Find Full Text PDFSci Transl Med
December 2024
Centre d'Immunologie de Marseille-Luminy, CIML, CNRS, INSERM, Aix-Marseille Université, Marseille, Turing Centre for Living Systems, 13288 Marseille Cedex 09, France.
Age-related thymic involution, leading to reduced T cell production, is one of the major causes of immunosenescence. This results in an increased susceptibility to cancers, infections, and autoimmunity and in reduced vaccine efficacy. Here, we identified that the receptor activator of nuclear factor κB (RANK)-RANK ligand (RANKL) axis in the thymus is altered during aging.
View Article and Find Full Text PDFNature
November 2024
Cellular Genetics, Wellcome Sanger Institute, Cambridge, UK.
T cells develop from circulating precursor cells, which enter the thymus and migrate through specialized subcompartments that support their maturation and selection. In humans, this process starts in early fetal development and is highly active until thymic involution in adolescence. To map the microanatomical underpinnings of this process in pre- and early postnatal stages, we established a quantitative morphological framework for the thymus-the Cortico-Medullary Axis-and used it to perform a spatially resolved analysis.
View Article and Find Full Text PDFEnter search terms and have AI summaries delivered each week - change queries or unsubscribe any time!