Severity: Warning
Message: file_get_contents(https://...@gmail.com&api_key=61f08fa0b96a73de8c900d749fcb997acc09&a=1): Failed to open stream: HTTP request failed! HTTP/1.1 429 Too Many Requests
Filename: helpers/my_audit_helper.php
Line Number: 176
Backtrace:
File: /var/www/html/application/helpers/my_audit_helper.php
Line: 176
Function: file_get_contents
File: /var/www/html/application/helpers/my_audit_helper.php
Line: 250
Function: simplexml_load_file_from_url
File: /var/www/html/application/helpers/my_audit_helper.php
Line: 3122
Function: getPubMedXML
File: /var/www/html/application/controllers/Detail.php
Line: 575
Function: pubMedSearch_Global
File: /var/www/html/application/controllers/Detail.php
Line: 489
Function: pubMedGetRelatedKeyword
File: /var/www/html/index.php
Line: 316
Function: require_once
Eosinophils express the chemoattractant receptors CCR3 and FPR. CCR3 binds several agonists such as eotaxin-1, -2, and -3 and RANTES, whereas the FPR binds the formylated tripeptide fMLP and a host of other ligands. The aim of this study was to investigate if there is interplay between these two receptors regarding the elicitation of migration and respiratory burst in human blood-derived eosinophils. Inhibition of the FPR with the antagonists CyH and boc-MLP abrogated the migration of eosinophils toward all of the CCR3 agonists. Similar results were seen when the FPR was desensitized with its cognate ligand, fMLP. In contrast, the respiratory burst triggered by eotaxin-1 was not inhibited by CyH. Thus, signals evoked via the FPR caused unidirectional down-regulation of CCR3-mediated chemotaxis but not respiratory burst in human eosinophils. The underlying mechanism was neither reduced ability of the CCR3 ligand eotaxin-1 to bind to CCR3 nor down-regulation of CCR3 from the cell surface. Finally, confocal microscopy and adFRET analysis ruled out homo- or heterodimer formation between FPR and/or CCR3 as an explanation for the reduction in chemotaxis via CCR3. Pharmacologic inhibition of signal transduction molecules showed that the release of free oxygen radicals in response to eotaxin-1 compared with fMLP is relatively more dependent on the p38 MAPK pathway.
Download full-text PDF |
Source |
---|---|
http://dx.doi.org/10.1189/jlb.0908514 | DOI Listing |
Enter search terms and have AI summaries delivered each week - change queries or unsubscribe any time!