The spleen plays a central role in primary humoral alloimmunization to transfused mHEL red blood cells.

Transfusion

Department of Pediatrics, AFLAC Cancer Center and Blood Disorders Service, Children’s Healthcare of Atlanta, Emory University School of Medicine, Atlanta, GA 30322, USA.

Published: August 2009

Background: Several differences exist between antigens on transfused red blood cells (RBCs) and other immunogens, including anatomical compartmentalization. Whereas antigens from microbial pathogens and solid organ transplants drain into local lymph nodes, circulating RBCs remain segregated in the peripheral circulation, where they are consumed by antigen-presenting cells (APCs) in the spleen and liver. Accordingly, it was hypothesized that the splenic APCs play a central role in primary alloimmunization to transfused RBCs.

Study Design And Methods: Recipient mice were splenectomized and transfused with transgenic RBCs expressing the membrane-bound hen egg lysozyme (mHEL) model RBC antigen. In some experiments, mHEL-specific CD4+ T cells were adoptively transferred into recipient mice to allow investigation of helper T-cell responses. Unmanipulated or sham-splenectomized mice served as controls. Recombinant murine cytomegalovirus expressing mHEL (mHEL-MCMV) was used as a control non-RBC immunogen. Humoral responses were measured by mHEL-specific enzyme-linked immunosorbent assay and flow cytometric–based RBC cross-match.

Results: Control animals synthesized detectable anti-HEL immunoglobulin (Ig)G after a single mHEL RBC transfusion. mHEL-specific CD4+ T cells underwent robust expansion, and adoptive transfer of CD4+ T cells resulted in a 1000-fold increase in anti-HEL IgG. In contrast, minimal anti-HEL IgG was detectable in splenectomized mice, mHEL-specific CD4+ T cells did not proliferate, and adoptive transfer did not increase anti-HEL IgG. However, anti-HEL IgG response after exposure to mHEL-MCMV was equivalent in control and splenectomized mice.

Discussion: Together, these findings illustrate the distinct properties of transfused RBCs as immunologic stimuli, with the spleen playing a critical role in primary RBC alloimmunization at the level of CD4+ T-cell activation.

Download full-text PDF

Source
http://www.ncbi.nlm.nih.gov/pmc/articles/PMC3568957PMC
http://dx.doi.org/10.1111/j.1537-2995.2009.02200.xDOI Listing

Publication Analysis

Top Keywords

cd4+ cells
16
anti-hel igg
16
role primary
12
mhel-specific cd4+
12
central role
8
alloimmunization transfused
8
red blood
8
blood cells
8
recipient mice
8
adoptive transfer
8

Similar Publications

Immune and metabolic factors play an important role in the onset and development of insomnia. This study aimed to investigate the causal relationship between insomnia and immune cells and metabolites. Data for 731 immune cell phenotypes, 1400 metabolites, and insomnia in this study were obtained from the GWAS open-access database.

View Article and Find Full Text PDF

Marek's disease virus (MDV), a highly contagious and oncogenic avian alphaherpesvirus, establishes a latent infection primarily in CD4 T cells. Latent infections are necessary for both persistent lifelong MDV infection and viral tumorigenesis. MicroRNAs (miRNAs) play critical roles as post-transcriptional regulators of viral infections.

View Article and Find Full Text PDF

Irreversible Electroporation and β-Glucan Induced Trained Innate Immunity for the Treatment of Pancreatic Ductal Adenocarcinoma: A Phase II Study.

J Am Coll Surg

January 2025

Division of Immunotherapy, The Hiram C. Polk Jr., MD Department of Surgery, Immuno-Oncology Program, Brown Cancer Center, University of Louisville School of Medicine, Louisville, KY, USA.

Introduction: Irreversible electroporation(IRE) has augmented the effects of certain immunotherapies in pancreatic cancer(PDA). Yeast-derived particulate beta-glucan induces trained innate immunity and has successfully reduces murine PC tumor burden. This is a Phase II study to test the hypothesis that IRE may augment beta-glucan induced trained immunity in patients with PDA.

View Article and Find Full Text PDF

A novel oncolytic Vaccinia virus armed with IL-12 augments antitumor immune responses leading to durable regression in murine models of lung cancer.

Front Immunol

January 2025

Sino-British Research Centre for Molecular Oncology, National Centre for International Research in Cell and Gene Therapy, School of Basic Medical Sciences, Academy of Medical Sciences, Zhengzhou University, Zhengzhou, China.

Oncolytic vaccinia viruses (VVs) are potent stimulators of the immune system and induce immune-mediated tumor clearance and long-term surveillance against tumor recurrence. As such they are ideal treatment modalities for solid tumors including lung cancer. Here, we investigated the use of VVL-m12, a next-generation, genetically modified, interleukin-12 (IL-12)-armed VV, as a new therapeutic strategy to treat murine models of lung cancer and as a mechanism of increasing lung cancer sensitivity to antibody against programmed cell death protein 1 (α-PD1) therapy.

View Article and Find Full Text PDF

Introduction: T cells are involved in the early identification and clearance of viral infections and also support the development of antibodies by B cells. This central role for T cells makes them a desirable target for assessing the immune response to SARS-CoV-2 infection.

Methods: Here, we combined two high-throughput immune profiling methods to create a quantitative picture of the T-cell response to SARS-CoV-2.

View Article and Find Full Text PDF

Want AI Summaries of new PubMed Abstracts delivered to your In-box?

Enter search terms and have AI summaries delivered each week - change queries or unsubscribe any time!