Objective: To compare the diagnostic performance of microscopy using Giemsa-stained thick and thin blood smears to a rapid malaria dipstick test (RDT) in detecting P. falciparum malaria in Kenyan school children.
Design: Randomised, controlled feeding intervention trial from 1998-2001.
Setting: Rural Embu district, Kenya. The area is considered endemic for malaria, with four rainy seasons per year. Chloroquine resistance was estimated in 80% of patients. Children had a spleen rate of 45%.
Subjects: A sample of 515 rural Kenyan primary school children, aged 7-11 years, who were enrolled in a feeding intervention trial from 1998-2001.
Main Outcome Measures: Percent positive and negative P. falciparum malaria status, sensitivity, specificity and positive and negative predictive values of RDT.
Results: For both years, the RDT yielded positive results of 30% in children compared to microscopy (17%). With microscopy as the "gold standard", RDT yielded a sensitivity of 81.3% in 1998 and 79.3% in 2000. Specificity was 81.6% in 1998 and 78.3% in 2000. Positive predictive value was 47.3% in 1998 and 42.6% in 2000, and negative predictive value was 95.6% in 1998 and 94.9% in 2000.
Conclusion: Rapid diagnostic testing is a valuable tool for diagnosis and can shorten the interval for starting treatment, particularly where microscopy may not be feasible due to resource and distance limitations.
Download full-text PDF |
Source |
---|---|
http://dx.doi.org/10.4314/eamj.v85i11.9670 | DOI Listing |
Exp Biol Med (Maywood)
January 2025
West African Centre for Cell Biology of Infectious Pathogens (WACCBIP), Department of Biochemistry, Cell and Molecular Biology, University of Ghana, Accra, Ghana.
Malaria causes significant morbidity and mortality worldwide, disproportionately impacting sub-Saharan Africa. Disease phenotypes associated with infection can vary widely, from asymptomatic to life-threatening. To date, prevention efforts, particularly those related to vaccine development, have been hindered by an incomplete understanding of which factors impact host immune responses resulting in these divergent outcomes.
View Article and Find Full Text PDFis an obligate human parasite of the phylum Apicomplexa and is the causative agent of the most lethal form of human malaria. Although N6-methyladenosine modification is thought to be one of the major post-transcriptional regulatory mechanisms for stage-specific gene expression in apicomplexan parasites, the precise base position of m6A in mRNAs or noncoding RNAs in these parasites remains unknown. Here, we report global nucleotide-resolution mapping of m6A residues in using DART-seq technology, which quantitatively displayed a stage-specific, dynamic distribution pattern with enrichment near mRNA 3' ends.
View Article and Find Full Text PDFOpen Forum Infect Dis
January 2025
UMR261 MERIT, Université Paris Cité, IRD, Paris, France.
Background: Malaria infections in pregnancy are a major cause of maternal morbidity and neonatal mortality in sub-Saharan Africa. A high proportion of these infections are submicroscopic, which are usually asymptomatic and therefore untreated during pregnancy. Intermittent preventive treatment with sulfadoxine-pyrimethamine (IPTp-SP) aims to prevent and treat all potential infections whether submicroscopic or not.
View Article and Find Full Text PDFMol Microbiol
January 2025
Department of Biochemistry and Molecular Biology, Justus-Liebig University Gießen, Gießen, Germany.
Immediately after invading their chosen host cell, the mature human erythrocyte, malaria parasites begin to export an array of proteins to this compartment, where they initiate processes that are prerequisite for parasite survival and propagation, including nutrient import and immune evasion. One consequence of these activities is the emergence of novel adhesive phenotypes that can lead directly to pathology in the human host. To identify parasite proteins involved in this process, we used modern genetic tools to target genes encoding 15 exported parasite proteins, selected by an in silico workflow.
View Article and Find Full Text PDFBMC Chem
January 2025
Department of Biochemistry, University of Johannesburg, Auckland Park Campus, Cnr Kingsway Avenue and University Road, Auckland, Park, PO Box 524, Johannesburg, 2006, South Africa.
Malaria is the extensive health concern in sub-Saharan Africa, with Plasmodium falciparum being the most lethal strain. The continued emergence of drug-resistant P. falciparum advocates for the development of new antimalarials.
View Article and Find Full Text PDFEnter search terms and have AI summaries delivered each week - change queries or unsubscribe any time!