Urinary tract infections are the second most common infectious disease in humans and are predominantly caused by uropathogenic E. coli (UPEC). A majority of UPEC isolates express the type 1 pilus adhesin, FimH, and cell culture and murine studies demonstrate that FimH is involved in invasion and apoptosis of urothelial cells. FimH initiates bladder pathology by binding to the uroplakin receptor complex, but the subsequent events mediating pathogenesis have not been fully characterized. We report a hitherto undiscovered signaling role for the UPIIIa protein, the only major uroplakin with a potential cytoplasmic signaling domain, in bacterial invasion and apoptosis. In response to FimH adhesin binding, the UPIIIa cytoplasmic tail undergoes phosphorylation on a specific threonine residue by casein kinase II, followed by an elevation of intracellular calcium. Pharmacological inhibition of these signaling events abrogates bacterial invasion and urothelial apoptosis in vitro and in vivo. Our studies suggest that bacteria-induced UPIIIa signaling is a critical mediator of bladder responses to insult by uropathogenic E. coli.
Download full-text PDF |
Source |
---|---|
http://www.ncbi.nlm.nih.gov/pmc/articles/PMC2669708 | PMC |
http://dx.doi.org/10.1371/journal.ppat.1000415 | DOI Listing |
Probiotics Antimicrob Proteins
January 2025
Department of Pediatrics, Division of Infectious Diseases, Washington University School of Medicine, St. Louis, MO, 63110, USA.
Catheter-associated urinary tract infections (CAUTIs) account for a large proportion of healthcare-associated infections. CAUTIs, caused by colonization of the catheter surface by uropathogens, are challenging to treat, especially when compounded by antibiotic resistance. One prophylactic strategy that could reduce pathogen colonization is bacterial interference, whereby the catheter surface is coated with non-pathogenic bacteria.
View Article and Find Full Text PDFActa Clin Belg
January 2025
Internal Medicine department, UZ Brussel, Internal Medicine Research Group, Vrije Universiteit Brussel, Brussels, Belgium.
Objectives: Urinary tract infections (UTIs) are an important cause of empiric antibiotic (over)treatment at the emergency department (ED). To enhance empiric antibiotic choices, mapping the national and local microbiology and antimicrobial resistance (AMR) patterns is crucial. This study aims to examine resistance patterns at a Brussels ED and to identify risk factors for AMR to evaluate current treatment guidelines and help combat AMR.
View Article and Find Full Text PDFObjective: Urinary tract infections (UTIs) are common in neonates. Understanding the changes in the prevalence of common uropathogens is essential for early diagnosis and effective treatment of UTIs. This study aims to identify etiological agents and determine the local antibiotic susceptibility patterns of uropathogens causing UTIs.
View Article and Find Full Text PDFUrogynecology (Phila)
January 2025
From the Division of Urogynecology and Reconstructive Pelvic Surgery, TriHealth, Cincinnati, OH.
Front Microbiol
December 2024
Department of Biological Science, Alberta Centre for Advanced Diagnostics, University of Calgary, Calgary, AB, Canada.
Introduction: Urinary tract infections (UTIs) are one of the most prevalent infections in North America and are caused by a diverse range of bacterial species. Although uropathogenesis has been studied extensively in the context of macromolecular interactions, the degree to which metabolism may contribute to infection is unclear. Currently, most of what is known about the metabolic capacity of uropathogens has been derived from genomics, genetic knockout studies or transcriptomic analyses.
View Article and Find Full Text PDFEnter search terms and have AI summaries delivered each week - change queries or unsubscribe any time!