The venom gland of viperid snakes has a central lumen where the venom produced by secretory cells is stored. When the venom is lost from the gland, the secretory cells are activated and new venom is produced. The production of new venom is triggered by the action of noradrenaline on both alpha(1)- and beta-adrenoceptors in the venom gland. In this study, we show that venom removal leads to the activation of transcription factors NFkappaB and AP-1 in the venom gland. In dispersed secretory cells, noradrenaline activated both NFkappaB and AP-1. Activation of NFkappaB and AP-1 depended on phospholipase C and protein kinase A. Activation of NFkappaB also depended on protein kinase C. Isoprenaline activated both NFkappaB and AP-1, and phenylephrine activated NFkappaB and later AP-1. We also show that the protein composition of the venom gland changes during the venom production cycle. Striking changes occurred 4 and 7 days after venom removal in female and male snakes, respectively. Reserpine blocks this change, and the administration of alpha(1)- and beta-adrenoceptor agonists to reserpine-treated snakes largely restores the protein composition of the venom gland. However, the protein composition of the venom from reserpinized snakes treated with alpha(1)- or beta-adrenoceptor agonists appears normal, judging from SDS-PAGE electrophoresis. A sexual dimorphism in activating transcription factors and activating venom gland was observed. Our data suggest that the release of noradrenaline after biting is necessary to activate the venom gland by regulating the activation of transcription factors and consequently regulating the synthesis of proteins in the venom gland for venom production.
Download full-text PDF |
Source |
---|---|
http://dx.doi.org/10.1242/jeb.030197 | DOI Listing |
Enter search terms and have AI summaries delivered each week - change queries or unsubscribe any time!