Preimplantation genetic diagnosis (PGD) is used to analyze embryos genetically before their transfer into the uterus. It was developed first in England in 1990, as part of progress in reproductive medicine, genetic and molecular biology. PGD offers couples at risk the chance to have an unaffected child, without facing termination of pregnancy. Embryos are obtained by in vitro fertilization with intracytoplasmic sperm injection (ICSI), and are biopsied mostly on day 3; blastocyst biopsy is mentioned as a possible alternative. The genetic analysis is performed on one or two blastomeres, by fluorescent in situ hybridization (FISH) for cytogenetic diagnosis, or polymerase chain reaction (PCR) for molecular diagnosis. Genetic analysis of the first or second polar body can be used to study maternal genetic contribution. Only unaffected embryos are transferred into the uterus. To improve the accuracy of the diagnosis, new technologies are emerging, with comparative genomic hybridization (CGH) and microarrays. In Europe, depending on national regulations, PGD is either prohibited, or allowed, or practiced in the absence of recommendations. The indications are chromosomal abnormalities, X-linked diseases or single gene disorders. The number of disorders being tested increases. In Europe, data collection from the year 2004 reports that globally 69.6% of cycles lead to embryo transfer and implantation rate is 17%. European results from the year 2004 show a clinical pregnancy rate of 18% per oocyte retrieval and 25% per embryo transfer, leading to 528 babies born. The cohort studies concerning the paediatric follow-up of PGD babies show developmental outcomes similar to children conceived after IVF-ICSI. Recent advances include human leucocyte antigen (HLA) typing for PGD embryos, when an elder sibling is affected with a genetic disorder and needs stem cell transplantation. The HLA-matched offspring resulting can give cord blood at birth. Preimplantation genetic screening (PGS) consists in euploid embryo selection; it could be used for advanced maternal age, repeated implantation failure, single embryo transfer or idiopathic recurrent pregnancy loss. These applications are controversial. PGD for inherited cancer predispositions is discussed and social sexing remains prohibited in Europe. PGD requires a close collaboration between obstetricians, fertility specialists, IVF laboratory and human geneticists. It needs intensive effort, expensive techniques and is demanding for the patients, but it offers tremendous opportunity for couples whose previous child has exhibited genetic abnormalities. The debate on certain indications is ongoing.
Download full-text PDF |
Source |
---|---|
http://dx.doi.org/10.1016/j.ejogrb.2009.04.004 | DOI Listing |
Fertil Steril
January 2025
Shady Grove Fertility, Rockville, MD, USA.
Objective: To compare the cost-effectiveness of a gestational carrier to a uterine transplantation in the treatment of absolute uterine-factor infertility.
Design: We performed a cost-effectiveness analysis using a decision-tree mathematical model comparing a gestational carrier to a uterine transplantation.
Subjects: Published literature was used to derive costs for solid organ transplant, immunosuppression, gestational carrier obtainment, in vitro fertilization, preimplantation genetic testing, and frozen embryo transfer.
J Assist Reprod Genet
January 2025
Department of Obstetrics and Gynecology, Cairo University, Cairo, Egypt.
PGT-A, what's it for? Considering the increase in fetal aneuploidies with a woman's age and the high number of miscarriages associated with fetal karyotype anomalies, the concept of selecting IVF embryos based on their karyotype in order to transfer only euploid embryos and eliminate aneuploid ones was proposed. Preimplantation genetic testing for aneuploidy (PGT-A) was then established, nearly 30 years ago, with the expectation that the transfer of euploid embryos would lead to a significant improvement in medically assisted reproduction (MAR) outcomes. PGT-A, what's wrong? Despite the practice and widespread use, PGT-A has not consistently proven its effectiveness.
View Article and Find Full Text PDFFertil Steril
January 2025
Department of Obstetrics, Gynecology and Women's Health, Albert Einstein College of Medicine, Montefiore's Institute for Reproductive Medicine and Health, Hartsdale, New York.
Turk J Haematol
January 2025
Acibadem Adana Hospital, Pediatric BMT Unit, Adana, Türkiye.
Background/aims: Preimplantation genetic diagnosis (PGD) with human leukocyte antigen (HLA) typing represents a significant advancement in treating inherited hematological disorders, particularly thalassemia major. This technology enables the birth of healthy children who can serve as compatible stem cell donors for their affected siblings. Turkey is a world leader in both PGD+HLA typing technology and hematopoietic stem cell transplantation from savior siblings born through PGD+HLA typing.
View Article and Find Full Text PDFEnter search terms and have AI summaries delivered each week - change queries or unsubscribe any time!